

Ohio State University

Application of Dempster-Shafer theory to estimate uncertainty and combine diverse sources of evidence in chemical risk assessment


James Rathman

International Conference on Uncertainty in Risk Analysis BfR

February 21-22, 2019

Chemical toxicity prediction approaches

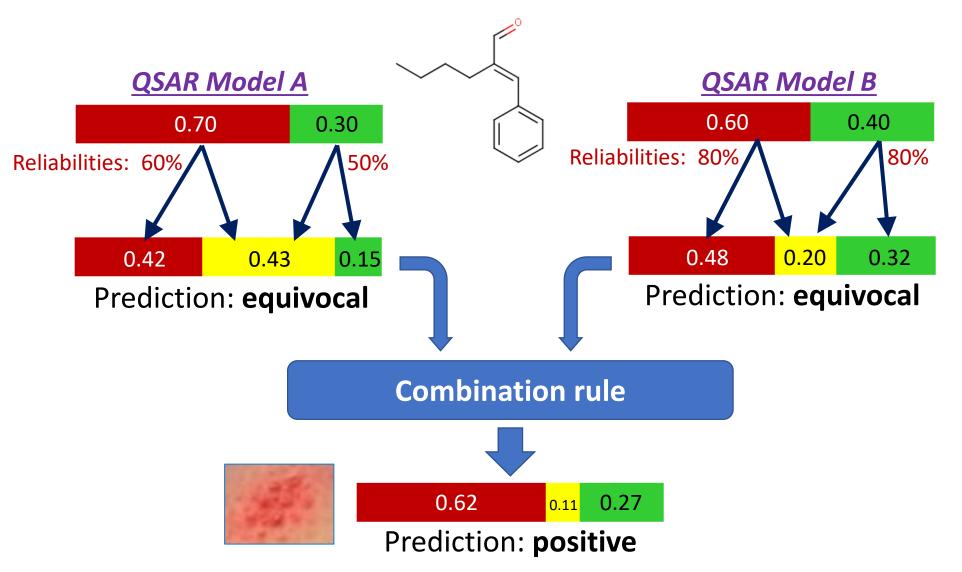
- Quantitative structure-activity (QSAR) models
 - global and local mode-of-action models
 - descriptors
 - ToxPrint chemotypes (expert defined fragments)
 - Physicochemical properties: logP, logS, TPSA, shape descriptors, etc.
 - Quantum mechanical properties: HOMO, LUMO, heat of formation
- Structural rules
 - expert-guided knowledgebase
- Read-across
 - using data available for suitable analogs to infer toxicity of a target compound
- Weight-of-evidence outcome using Dempster Shafer Theory

MN AM Dempster-Shafer Theory (DST)

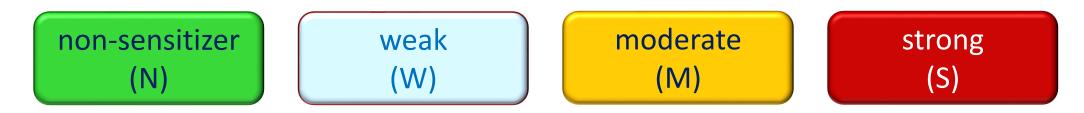
DST provides a rigorous approach for:

estimating uncertainty

combining multiple sources of evidence to make a decision


Allows us to explicitly take into account:

- reliability of quantitative structure- activity (QSAR) models
- reliability of structural rules ("alerts")
- reliability of experimental results from in vitro assays and toxicity studies

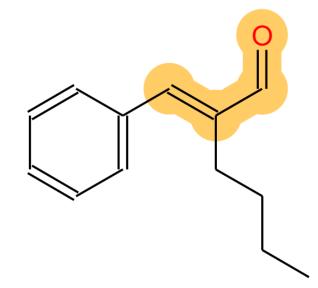

Rathman, J.F., Yang, C., Zhou, H. "Dempster-Shafer theory for combining in silico evidence and estimating uncertainty in chemical risk assessment", *Computational Toxicology 6*, 16-31 (**2018**)

MN AM Skin sensitization prediction

Consider a four-level classification model for skin sensitization:

The Dempster-Shafer focal elements can be defined such that the model has 8 possible prediction outcomes:

DST allows us to capture different degrees of uncertainty.


Reliability measures for QSAR classification models

Performance statistics from model validation

- accuracy (concordance, Matthews correlation coef)
- sensitivity and specificity
- positive and negative predictive values (PPV and NPV)
- Domain of applicability
- Ideally, an independent external test set should be used...
- ...but for many toxicity endpoints, high-quality data suitable for building QSAR models are limited. We may then need to rely on cross-validation performance measures.

Reliability measures for structural rules

Example of a chemotype alert for skin sensitization

 α , β -unsaturated ketone (Michael acceptor)

odds ratio = 5.28

Reliability measures for toxicity studies

►ECVAM-validated methods with reliability estimates (e.g., DPRA, KeratinosensTM, and h-CLAT assays for skin sensitization).

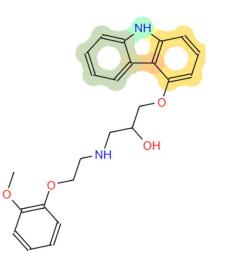
Klimisch scoring based on assessment of how well a toxicity study conforms to internationally accepted testing guidelines.

- 1 = reliable without restriction
- ▷ 2 = reliable with restriction
- ▷ 3 = not reliable
- 4 = not assignable
- When the original study data are not available, Klimisch scores, if not provided, cannot be extracted; or, if provided, cannot be verified.

H.J. Klimisch, M. Andreae and U. Tillmann, "A Systematic Approach for Evaluating the Quality of Experimental Toxicological and Ecotoxicological Data", *Regulatory Toxicology and Pharmacology*, 25, 1–5 (1997).

AM Accounting for uncertainty of in vitro assays

		Performance metrics			
		In vitro			
Example: skin	\wedge \wedge	assays	PPV	NPV	
sensitization		DPRA	0.87	0.57	
(LLNA) for		KeratinoSens™	0.85	0.52	Urbisch, et al. (<i>Reg</i> <i>Tox and Pharm 71</i> ,
benzaldehyde	\sim	h-CLAT	0.85	0.57	2015 , 337-351)

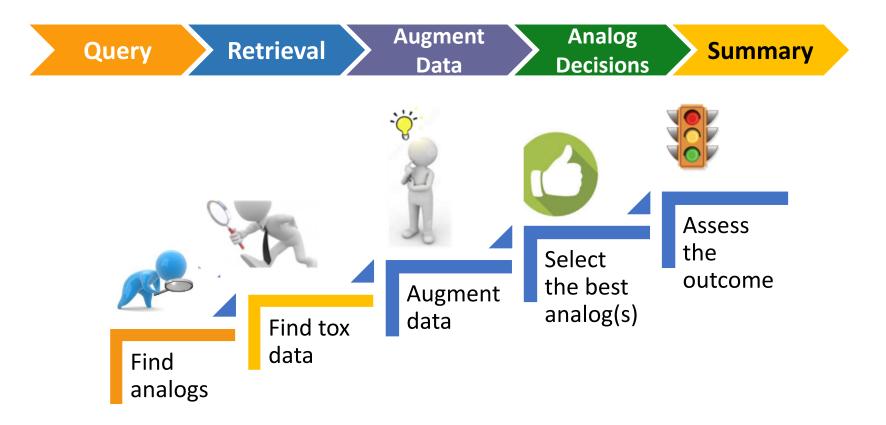

In vitro assay	Assay result	DST Probabilities			LLNA Prediction
DPRA	negative	C).57	0.43	negative
KeratinoSens	positive	0.15	0.	85	positive
h-CLAT	positive	0.15	0.	85	positive

Factors that reduce reliability

Inaccurate chemical structures

- Chemical reactivity, metabolism
 - test material differs from the active entity

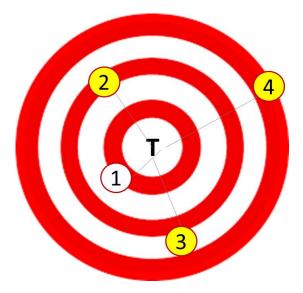
Problematic toxicity study results

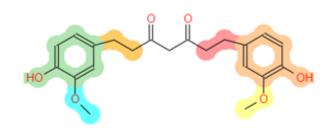

- secondary or tertiary data sources (e.g. databases, safety assessment reports) may be not be precise or exhaustive, or may introduce mistakes
- Iack of information on guideline (GLP-compliant?), certain study design parameters (route of exposure, doses tested, etc.), or critical effects

Inconsistent calls for a given toxicity endpoint

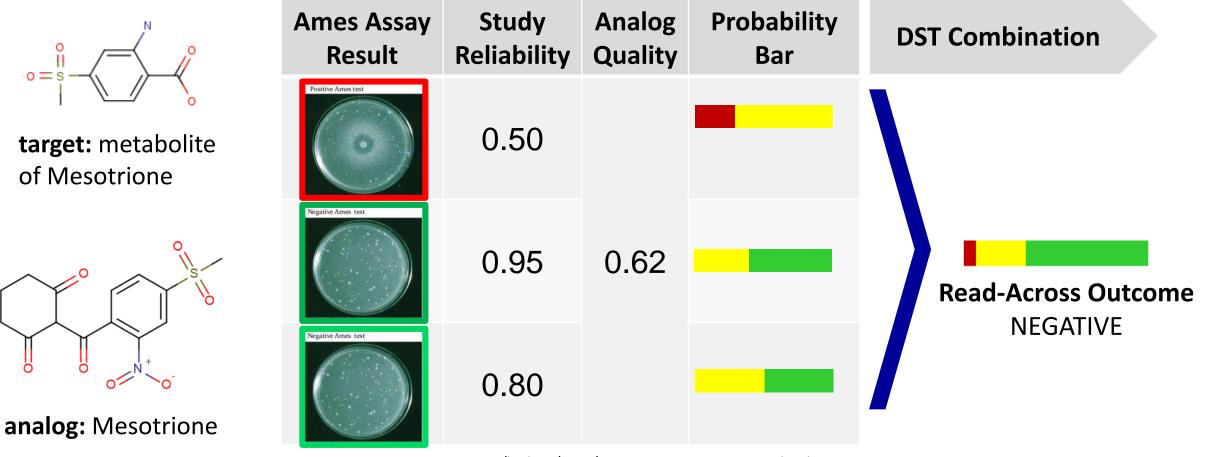
- compound level (multiple studies with different calls)
- study level (same study with different calls depending on the regulatory body/organization responsible for the call)

Limited or unspecified domain of applicability

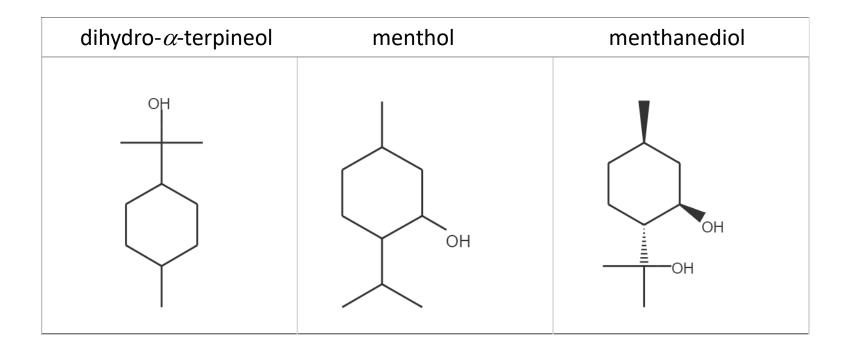

MN AM Generic read-across workflow



MN AM Collecting evidence for read-across


Find analogs and evaluate analog quality based on

- ▷ structure similarity
- property similarity
- Apply chemotype profilers for relevant biology
 - DNA binders
 - protein binders
 - metabolic rules
- Consider metabolism
 metabolite generation
 metabolic similarity
- Find tox data for analogs


Read-across example using Ames results for a single analog

Ames assay images: www.mun.ca/biology/scarr/4241_Ames_test_reversion.html

Read-across example with multiple analogs

Read-across for repeated-dose toxicity of dihydro- α -terpineol from menthol and menthanediol:

Compound Summary	target	analog 1	analog 2
CMS ID	он		
	\checkmark		
		ОН	ОН
	\mathbf{i}		——————————————————————————————————————
	I		I
Data Summary			
Studies	0	5	1
Fingerprints			
RDKit MolFingerprint			
Tanimoto		0.8	0.76
ToxPrint Fingerprint			
Tanimoto		0.5	0.71
Skyline Profiles			
Skyline Terpineol			
			_
Skyline			
Pearson correlation coefficient		1	0.97
Analogue Quality		0.74	0.81

Short-term RDT Study	target	analog 1	analog 2
Description		Rat, oral-gavage, 28 days	
Outcome		LOEL = 200 mg/kg BW/day, Liver	
Reliability		Low (by RepDose)	
		0.5	
reliability score: Reliability		positive ×	
Subchronic RDT Study			
Description		Rat, oral, 91 days	
Outcome		NOEL = 50 mg/kg BW/day, Organ Weight	
Reliability		Low	
		0.5	
reliability score: Reliability		positive ×	
Chronic RDT Study			
Description		Rat, oral, 730 days	
Outcome		NOAEL = 750 mg/kg BW/day, Body Weight	
Reliability		High	
		0.9	
reliability score: Reliability		negative ×	
DART Study			
Description			Rat, DART
Outcome			NOAEL = 400 mg/kg BW/day, Pub Weight
Reliability			Medium
reliability score: Reliability			negative

MNAM

Predicted Toxicity	target	analog 1	analog 2
Cleft Palate	negative		
Probability Bar			
Oral hDILI			
Call	negative		
Probability Bar			
Analogue Quality		0.74	0.81
TIER 1 (Analogue+Exp)	negative		
TIER 2 (Analogue+Exp+In silico)	negative		

Real-world experience

Our goal is to help experts in regulatory bodies and industry make good decisions. They want methods that are

- ▷ transparent
- ▷ interpretable and mechanistic
- > as simple as possible
- They are often uncomfortable reporting decisions with any appreciable uncertainty, or if there are conflicting pieces of evidence.
- They want the decision-making process to be interactive, but may be unsure about how to select good analogs, choose evidence sources, or specify reliabilities.
- Experts looking at the same evidence will not always agree, but DSTbased approaches can help identify why they disagree.

Jim Rathman

james.rathman@mn-am.com rathman.1@osu.edu

Chihae Yang

chihae.yang@mn-am.com

Aleksandra Mostrag

aleksandra.mostrag@mn-am.com

Mark Cronin M.T.Cronin@ljmu.ac.uk