27th August 2019

Challenges for global health and development

Dr. Marta Hugas

Chief Scientist, EFSA

Trusted science for safe food

Global Health and Development

...and EFSA's support in achieving the SDGs

Food safety: a human right

SDG 2.1: By 2030 end hunger and ensure access by all people, in particular the poor and people in vulnerable situations including infants, to safe, nutritious and sufficient food all year round

Sustainable food future by 2050

Source: wri.org/sustfoodfuture

WORLD RESOURCES INSTITUTE

Sustainable food future by 2050

Keeping Food Safe in the EU

- Established in 2002, following a series of food crises as part of a programme designed to
 - Ensure a high level of consumer protection and restore confidence in the EU food supply
 - Clearly separate risk assessment and risk management functions

General Food Law: Principles and approaches:

- Science-based decisions,
- Integrated approach,
- Precautionary principle,
- Transparency,
- Industry responsibility,
- Traceability

Keeping Food Safe in the EU

EU Food Safety System

How does EFSA work

ADVISE

EFSA's values, Strategy and Quality Management System

Quality Management System

- ✓ Assure customer satisfaction
- ✓ Address societal expectations
- ✓ Guarantee continual improvement

EFSA's activities

SCIENTIFIC EXCELLENCE

Food crises and urgent assessments

in breakfast cereals

Phenylbutazone in horsemeat

FOOD-ANIMAL DATA

- Directive 2003/99/EC on the monitoring of zoonoses and zoonotic agents
 - Publication of the annual EU Summary Report
 - MSs have an obligation to report data each year
 - Mandatory data collection for:
 - 8 zoonotic agents: Salmonella (+ AMR), Campylobacter (+ AMR), L. monocytogenes, Brucella, tuberculosis due to Mycobacterium bovis, VTEC, Trichinella, Echinococcus
 - for foodborne outbreaks (FBOs) and susceptible animal populations

HUMAN DATA

Decision 1082/2013/EU on serious cross-border threats to health

Zoonoses data collection

[Available online: www.efsa.europa.eu/efsajournal]

Reported hospitalisation and case fatality rates due to zoonoses in confirmed human cases in the EU, 2017

+

Disease	Number of confirmed ^(a) human cases	Hospitalisation				Deaths			
		Status available (%)	Number of reporting MSs®	Reported hospitalised cases	Proportion hospitalised (%)	Outcome available (%)	Number of reporting MSs ⁽¹⁰⁾	Reported deaths	Case fatality (%)
Campylobacteriosis	246,757	27.6	17	20,810	30.5	72.8	16	45	0.04
Salmonellosis	91,662	43.1	14	16,796	42.5	67.8	17	156	0.25
Yersiniosis	6,823	27.1	14	616	33.4	65.5	15	3	0.07
STEC infections	6,073	41.0	18	933	37.5	66.1	21	20	0.50
Listeriosis	2,480	40.4	16	988	98.6	65.8	18	225	13.8
Q-fever	928	NA(a	NA	NA	NA	56.0	10	7	1.35
Echinococcosis	827	31.2	14	140	54.3	30.1	14	1	0.40
Brucellosis	378	45.8	10	104	60.1	33.9	10	1	0.78
Tularaemia	321	38.3	9	76	61.8	51.1	9	1	0.6
West Nile fever ^(a)	212	72.2	8	134	87.6	98.6	9	25	12.0
Trichinellosis	168	44.6	9	56	74.7	40.5	9	0	0.0
Congenital toxoplasmosis	38	57.9	3	18	NA	63.2	3	0	0.0
Rabies	1	NA©	NA	NA	NA	0.0	0	NA	NA

Strong-evidence FBOs surveillance data, by causative agent and by food vehicle, EU, 2017

Strong-evidence FBOs surveillance data, by setting, EU, 2017

- What were the locations ('settings') where the food was consumed?
 - About one in three strong-evidence FBO happened at home ('Household') followed by 'Restaurants, pubs, street vendors and take away' 'Canteen or catering to workplace, school, hospital' and 'Other settings' (such as farms, fairs and festivals, other).
- What were the causative agents of strong-evidence FBO reported in those different settings?
 - They are shown in the figure to the right: in the home setting, the diversity of agents was largest and Salmonella was more frequently reported compared to other settings.

Food safety: surveillance pyramid

Knowledge gaps in regulatory science

Environmental risks e.g multiple stressors and bees

Evaluation of the safety of new products •e.g. novel foods

Development of new assessment methods:

- nanotechnology, active and intelligent packaging
- `-omics', less animal testing

Chemical mixtures/ combined toxicity of substances in food

Antimicrobial resistance

Hazards linked to globalisation: plant pests, animal diseases, vector-borne diseases

Globalized food/animal trade, travel and migration

long-distance transmission of pathogens, long and complex food chains

Changes in agriculture and food industry

intensification and industrialization of agriculture, new technologies, and handling infected animals during food production

Increasing vulnerability of humans

ageing population, immunosuppression, poverty, migration, emergencies

Changing lifestyles

urbanization, eating food outside the home, more raw food

Climate change

increase in temperature and humidity will affect the ability of many pathogens to survive, grow and/or expand

Antimicrobial resistance

Changing world

One health

Global change drivers and trends

Vector-borne diseases

Joint activities for preparedness

Case study: AMR

Why is AMR a serious threat to public health?

- 25 000 patients die annually in the EU alone as a result of infections caused by resistant bacteria.
- Globally this number could be as high as 700 000.

 10 million deaths per year are projected between 2015 and 2050 if current infection and resistance trends are not reversed.
 Only 0.7 million of these additional deaths would occur in North America or Europe, with the largest numbers in Africa and Asia.

European Commission. AMR: a major European and Global Challenge, https://ec.europa.eu/health/amr/sites/amr/files/amr_factsheet_en.pdf

Complete **susceptibility** indicator *E. Coli* from pigs (2015)

Considerable variations in consumption between countries within the animal and human sectors, respectively

Consumption of antibacterials for systemic use (ATC group J01) in the community and hospitals, EU/EEA countries, 2015, expressed as DDD per 1 000 inhabitants and per day

Spatial distribution of overall sales of all antimicrobials for food-producing animals, in mg/PCU, for 30 countries, 2015

For Austria, Czech Republic, Germany, Iceland and Spain , only community data were reported.

- Indicates that there is an obvious potential for reduction in other countries, particularly among the highest users.
- Several countries have reduced their consumption substantially, in particular in the animal sector

Implementation of Intersectoral Coordination Mechanism (n=25 countries) Prudent use of antimicrobial agents in human medicine: third report on implementation of the Council recommendation - SANTE 2016 Periodic or annual reports from the ICMs.

https://ec.europa.eu/health/amr/sites/amr/files/amr_projects_3rd-report-councilrecprudent.pdf

Global Health Risks International cooperation is key

- Emerging disease risk is a local issue with a global dimension.
- The emergence of a pathogen involves a combination of changes in key drivers.
- Most drivers for emerging issues are common to human, veterinary, plant and ecosystem health
- Pathogen discovery Pathway discovery

Data – Information - Knowledge

1. Identification of emerging issues 2010 2017(1)

%

41.88 23.08

16.24

18.80

100.00

Ν

22

117

no conclusion

total

Others (e.g. antimicrobial resistance, allergies and nutrition)

EFSA International cooperation

Partners Established cooperation IPA/ENP countries

Work together

Harmonized Methodologies & interoperability

Case study: FoodEx2

Organic yoghurt, cow milk, semi skimmed, with cereals and raspberries

Risk communication is

Bridging the gap between science and the consumer

Promoting and disseminating consistent messages

Understanding consumer perception of food and food safety risks

Who does EFSA communicate with?

How?

MULTIMEDIA

- Videos
- Interactive tools
- Infographics,
- Data visualisation

 All EFSA scientifc outputs

- Twitter,
- LinkedIn
- YouTube

EFSA WEBSITE

Factsheets

Events

Lay Summaries

- News,
- Topics
- Alerts,
- Newsletter

SCIENTIFIC OUTREACH

Science networks

Ð

- Infosessions
- Scientific Conferences
- Webinars

Understanding the societal context

Case study: stakeholders engagement approach

Permanent mechanisms

Stakeholder Fourm Bussels, November 2018 Parma, October 2019

Stakeholders Bureau Brussels, May 2019 Brussels, September 2019

- Boarder range of registered stakeholders
- Balanced approach to representation of interests
- Diverse ways of interaction through permanent and targeted mechanisms:
 - Scientific Colloquia
 - Discussion Groups (e.g. EU Bee Partnership for Data Sharing)
 - Roundtables (e.g. NGO roundtable, Industry roundtable),
 - Communicators Lab, Info sessions, Framing of Questions
- Equal opportunity to provide input to EFSA's work

Subscribe to

www.efsa.europa.eu/en/news/newsletters www.efsa.europa.eu/en/rss

Engage with careers

Follow us on Twitter

@efsa_eu
@plants_efsa
@methods_efsa