Risk assessment of antimicrobial resistance

Dr. Anja Buschulte
Methodological aspects for AMR Risk Assessment

General principles for Risk Assessments apply
Hazard Identification

What exactly is the hazard with AMR?

- The drug, i.e. residues of the drug?
- The bacterial species?
- The resistance determinant, i.e. the resistance gene?
- The DNA carrying the resistance gene (Plasmid, Integron etc.)?
Hazard Identification

Aim: to describe the foodborne AMR hazard of concern

Specific strains or genotypes of foodborne microorganisms that may pose risks by a particular combination of

- food commodity,
- AMR microorganism and / or determinants and
- antimicrobial agents which are affected by resistance.
Information on the biology of AMR microorganisms / determinants within different environments / niches e.g.

- interactions with other bacteria
 - in animal feeds,
 - aquaculture or
 - the gut environment
 - in food matrices

Information on susceptible strains of the same organisms or related AMR microorganisms and / or determinants are useful.
Hazard Identification (Annex 2)

1.1 Identification of **hazard of concern**: foodborne AMR microorganisms and / or determinants

1.2 **Microorganisms** and **resistance** related information

- Potential human pathogens (phenotypic and genotypic characterization) that are likely to acquire resistance in non-human hosts
- Commensals with AMR determinants (phenotypic and genotypic characterization) and the ability to transfer them to human pathogens
- Mechanisms of AMR, location of AMR determinants, frequency of transfer and prevalence among human and non-human microflora
- Co- and cross-resistance and importance of other antimicrobial agents whose efficacy is likely to be compromised
- Pathogenicity, virulence and their linkage to resistance
1.3 The **antimicrobial agent** and its properties

- **Description** of the antimicrobial agent – name, formulation, etc.
- **Class** of antimicrobial agent
- **Mode of action** and spectrum of activity
- **Pharmacokinetics** of the antimicrobial agent
- Existing or potential human and non-human uses of the antimicrobial agents and related drugs
Hazard characterisation

Which adverse health effects could be relevant?

Qualitative description
Semi-quantitative model
Quantitative model

translating exposure to AMRM into the probability of infection / subsequent disease

Disease related to pathogens

Increased frequency of infection / disease
Increased treatment failures and loss of treatment options
Increased severity of infection / disease

Estimation of diseases and infections (= adverse health effects) related to AMRM

Risk Assessment
1. Hazard identification
2. Hazard characterisation
3. Exposure assessment
4. Risk characterisation

A. Buschulte, 27.08.2019, Latin American Risk Assessment Symposium, Montevideo, URY
Hazard Characterisation (Annex 2)

3.1 **Human** host and **adverse health effects**

- Host factors and susceptible **population**
- **Nature** of the infection, disease
- **Diagnostic** aspects
- **Epidemiological** pattern (outbreak or sporadic)
- Antimicrobial **therapy** and hospitalization
- **Importance** of the antimicrobial agents
- Increased **frequency** of infections and **treatment failures**
- Increased **severity** of infections (duration↑, frequency↑, hospitalization↑, mortality↓)
- **Persistence** of hazards in humans

3.2 **Food** matrix related factors **influencing survival** of microorganism in the gut

3.3 **Dose-response relationship** between exposure and probability of outcome

A. Buschulte, 27.08.2019, Latin American Risk Assessment Symposium, Montevideo, URY
Hazard Characterization

Various disease outcomes associated with the factor are identified.
Two approaches used to estimate the disease burden:

- **Exposure based approach**
 - Assessment of the exposure of the study population to the risk factor is made.
 - Dose-response relationship for the given hazard is defined.
 - Exposure and dose-response are combined to produce estimates of outcome.

- **Outcome-based approach**
 - Disease outcome data are obtained.
 - The fraction attributable to the risk factor of interest is estimated.

Exposure assessment

The fundamental activities in exposure assessment:

(a) clear depiction or drawing of the exposure pathway

(b) detailing the necessary data requirements

(c) summarising the data.

Adapted from: Codex Alimentarius, CAC/GL 77-2011

A. Buschulte, 27.08.2019, Latin American Risk Assessment Symposium, Montevideo, URY
Exposure Assessment

Antimicrobial resistant microorganism (AMRM) / Antimicrobial resistance determinant (AMRD)

Three major players

| Selection of resistant bacteria in primary production/pre-harvest | Transmission of bacteria to meat during slaughter and processing | Handling and preparation of food in public or household environment |

Risk Assessment

1. Hazard identification
2. Hazard characterisation
3. Exposure assessment
4. Risk characterisation
Sources of information: Antimicrobials sold in the EU 2015 (EMA 2017)

Sales of antimicrobial agents by antimicrobial class as percentage of the total sales for food-producing species, in mg/PCU, aggregated by 30 European countries, for 2015.
But: where, when and for how long were these drugs used?

- Sales data reflect overall use but have limited analytical value
- Exposure of animals needs to be measured on a species or production type level

Number of treatments highly depend on production level/stage

- **Amount** of substance alone is a poor measure.
Risk Characterization

Risk characterization considers the key findings from

- hazard identification,
- hazard characterization
- exposure assessment

to estimate the risk.

The **form** and the **outputs** will **vary** from assessment to assessment as a function of the risk management **request**!
Qualitative risk assessment - example

<table>
<thead>
<tr>
<th>Hazard characterisation</th>
<th>Exposure assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negligible</td>
</tr>
<tr>
<td>Negligible</td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td></td>
</tr>
</tbody>
</table>
Quantitative risk assessment in AMR - challenges

- Bacterial concentrations are not constant over time
- Bacterial growth is determined by many factors
- Bacteria interact (horizontal gene transfer, competition) with varying intensity
- Resistance determinants can be carried by different bacterial species
- Knowledge of processes on presence and concentration of bacteria is still limited

More information can be found here: McEwen SA
Quantitative human health risk assessments of antimicrobial use in animals and selection of resistance: a review of publicly available reports.
Rev Sci Tech 2012 Apr;31(1):261-76
Summary

AMR risk assessment follows **general** risk assessment **principles**

Codex alimentarius guideline can and should be used

Major challenges

- **Complexity** of biology
 - Horizontal gene transfer within/between species
 - Cross and co-resistance
 - Bacterial growth

- AMR is related to **human** and **veterinary medicine**
 - Veterinary / food chain share needs to be determined

- Complex **exposure patterns**
 - Environment / Contact to animals / Contact to humans / Food

- **Shortage** on quantitative **data**
Thank you for your attention

Dr. Anja Buschulte

German Federal Institute for Risk Assessment
Max-Dohrn-Str. 8–10 • 10589 Berlin, GERMANY
Phone +49 30 - 184 12 - 24102 • Fax +49 30 - 184 12 – 99 0 99
anja.buschulte@bfr.bund.de • www.bfr.bund.de/en