Enhancing biosecurity on pig farms and freezing meat to prevent toxoplasmosis

A Social Cost-Benefit Analysis

Anita Suijkerbuijk BfR 4 November 2019
National Institute for Public Health and the Environment

RIVM – Committed to health and sustainability
National Institute for Public Health and the Environment

Governmental research and knowledge institute

providing policy support to (a.o)

- Dutch Ministry of Health, Welfare and Sport;
- Ministry of Housing, Spatial Planning and the Environment;
- Ministry of Agriculture Nature and Food Quality;
- National Food Authority, and several National Inspectorates.
- EU bodies
RIVM: 3 main fields of interest

1. Centre for Infectious diseases control
2. Environment and Safety
3. Public Health and Health Services

- ~1700 staff employed

Toxoplasmosis project here presented is collaboration of:
- Centre for Zoonoses and Environmental Microbiology
- Centre for Nutrition, Prevention and Health Services
- Centre for Infectious Diseases Epidemiology and Surveillance
Economic evaluation at the RIVM

- 10 health and environmental economists, wider group of about 30 people with economic interests

- Longstanding tradition of economic evaluation for public health interventions, some classical examples:
 - Vaccination
 - National screening campaigns, i.e. hepatitis screening
 - Interventions targeted at (more) healthy living:
 - Stop smoking
 - Enhance physical activity
 - More healthy nutrition
 - Alcohol use
Economic evaluation: background

Always involves a comparative analysis of two or more alternative investment possibilities (incremental cost effectiveness analysis).

Goal is to systematically:
- identify,
- measure,
- value, and
- compare
- costs and benefits (consequences)
 - of different alternative
- interventions (investments)
Economic evaluation

Comparator 0 = Current program / intervention
Economic evaluation

NOT: Is this intervention cheaper than other interventions?
Cost-effectiveness analysis (CEA) most often used

- Ratio of cost differences over effect differences:

\[
\text{Cost-utility ratio of B (intervention under study) compared to A (reference situation – old situation):}
\]

\[
\frac{\text{net cost B – net cost A}}{\text{QALYs B - QALYs A}}
\]

Net cost: Cost of intervention -/- future savings

The cost-utility ration expresses the amount of money needed (and will not be available for alternative options anymore) to achieve one additional **Quality Adjusted Life Year (QALY)**, if we replace the reference situation (A) with the intervention under study (B)
Quality adjusted life year (QALY) as outcome measure

QALY = one life year in full quality
Cost-effectiveness plane

Incremental costs

more expensive
less effective

more expensive
more effective

NEVER

?

Incremental effects

?

ALWAYS

less effective
less expensive

more effective
less expensive
Cost-effectiveness plane

Incremental costs

more expensive
less effective

40

\[\Delta E \]

ICER = 40/2 = 20

more expensive
more effective

\[\Delta C \]

Incremental effects

less effective
less expensive

more effective
less expensive
WTP for QALY international

<table>
<thead>
<tr>
<th>Country</th>
<th>Currency</th>
<th>Threshold local currency</th>
<th>Threshold in Euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>USD</td>
<td>50000-100000</td>
<td>36.600-73.200</td>
</tr>
<tr>
<td>Sweden</td>
<td>SEK</td>
<td>500000</td>
<td>54.000</td>
</tr>
<tr>
<td>UK</td>
<td>GBP</td>
<td>30000</td>
<td>44.500</td>
</tr>
<tr>
<td>Australia</td>
<td>AUSD</td>
<td>42000-76000</td>
<td>26.200-47.400</td>
</tr>
<tr>
<td>Canada</td>
<td>CND</td>
<td>20000-100000</td>
<td>13.700-68.700</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>EURO</td>
<td>20000-80.000</td>
<td>20.000-80.000</td>
</tr>
<tr>
<td>New Zealand</td>
<td>NZD</td>
<td>20000</td>
<td>11.200</td>
</tr>
</tbody>
</table>

World Bank: QALY may cost up to 3 times GDP per capita, if ≤1 GDP/capita, intervention is very cost-effective. Dutch GDP ~ €35.000 per capita.
Economic evaluation - perspective

- Perspective: the viewpoint from which an economic evaluation is conducted, determines which costs to include and how effects are valued

- Two perspectives most often used in health economic evaluations:

 - Health care perspective: include health care costs and health effects only (third party payer perspective / insurance perspective / Ministry of Health)

 - Societal perspective: Include ALL COSTS and ALL BENEFITS regardless who incurs costs and who obtains benefits
Main features of Social Cost-Benefit Analysis

- Policy options are compared based on their consequences for welfare levels for society at large.

- All costs and all effects are expressed in monetary terms, including health effects, death, pain, suffering.

- Starting point is an inventory of all societal effects of interventions: healthcare, criminal justice, school system, production losses, traffic accidents, companies, etc etc.

- A positive net benefit implies that the intervention has more benefits than costs, and vice versa.
Some additional features of SCBA (2)?

SCBA is a cumulation of:

- “soft” Euro’s (hypothetical, non-financial Euro’s, e.g. monetary value of health effects)
- “real” Euro’s (real money, e.g. savings as a consequence of less hospitalisation)
- This implies that the net benefit is not similar to money that can be readily spent
- Effects that cannot be quantified will return as a PM (Pro Memori) in the SCBA
In sum

Economic evaluations are important for policy making

Social Cost-Benefit Analyses are preferred when more sectors of society are involved
Toxoplasmosis
Disease burden (DALYs) in the Netherlands

<table>
<thead>
<tr>
<th></th>
<th>2012</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congenital</td>
<td>2151</td>
<td>1622</td>
</tr>
<tr>
<td>Acquired</td>
<td>1345</td>
<td>280</td>
</tr>
<tr>
<td>Total</td>
<td>3496</td>
<td>1902</td>
</tr>
</tbody>
</table>

![Graph showing disease burden (DALY per year)]
Prevention of toxoplasmosis

- High burden among foodborne diseases: effective and cost-effective preventive interventions are warranted

- It is essential to determine the extent and dimensions of the problem, possible effective interventions and the costs and benefits of implementing those for society

- Freezing meat intended for raw or undercooked consumption, and enhancing biosecurity on pig farms are promising interventions to prevent *T. gondii* infections in humans

- Implementing these interventions would expectedly reduce the number of infections; the net benefits for society are unknown.
Two hypothetical interventions

1. Enhancing biosecurity on pig farms

2. Freezing meat intended for raw or undercooked consumption

 - Assumption: implementation within EU (with no additional advantages or disadvantages for countries)
Freezing meat intervention

Targeted at:

- Steak tartare also known as filet américain
- Steak
- Lamb chop
- Leg of mutton
Biosecurity intervention

Quality assurance and monitoring working procedures on pig farms is already established in the Netherlands

In this SCBA we assess:

- A practical risk based surveillance program
- Identification of seropositive pig farms by blood samples taken at slaughter
- An additional audit on positive farms for the presence of risk factors and recommendations how to control these risk factors (e.g. measures to exclude cats from stables, storage of feed, control of rodents)
Design of the SCBA model

Information of costs, benefits and stakeholders from several sources and models is needed:

1. Estimation of disease burden, cost-of-illness, and meatborne attribution
2. Quantitative microbial risk assessment (QMRA)
3. Costs of the interventions
4. Acceptance by consumers (DCE)
5. Estimation of producer and consumer changes due to new prices
6. Cost and benefits for the stakeholders involved: government, consumers, farmers, freezing meat companies, and slaughterhouses
Model

- DALY & COI
- Intervention costs freezing meat / biosecurity pig farms
- Consumer acceptance using DCE
- New equilibrium in price and quantity
- Net benefit:
 - Averted DALY (in €)
 - Averted COI
 - Δ consumer surplus
 - Δ producer surplus
 - Δ government
Stakeholders involved with the interventions

Consumers:
Improvement of quality of life
Decline of patient cost
Less productivity losses
Meat consumption will change, consumer surplus

Producers:
Farmers, higher costs for biosecurity interventions
Freezing meat companies, freezing costs -> consumers
Slaughterhouses, serology and audit cost-> consumers

Government:
Less healthcare costs
Less special education costs
QMRA meatborne toxoplasmosis: insight in risky products

<table>
<thead>
<tr>
<th>Species</th>
<th>QMRA 2011</th>
<th>QMRA 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef</td>
<td>67.6</td>
<td>84.0</td>
</tr>
<tr>
<td>Lamb & Mutton</td>
<td>14.0</td>
<td>0.2 & 3.7</td>
</tr>
<tr>
<td>Pork</td>
<td>11.2</td>
<td>12.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Products</th>
<th>QMRA 2011</th>
<th>QMRA 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filet américain</td>
<td>37.8</td>
<td>79.8</td>
</tr>
<tr>
<td>Pork sausage (theeworst)</td>
<td>0.2</td>
<td>10.3</td>
</tr>
<tr>
<td>Leg of mutton</td>
<td>1.0</td>
<td>3.7</td>
</tr>
</tbody>
</table>
Discrete choice experiment (DCE)

Aim:
- To gather information on consumers’ change in willingness to pay for frozen meat

DCE:
- Technique to elicit preferences of respondents
- By presenting choices to respondent of service or product of interest
- Based on systematic variation of relevant characteristics

Results:
- Most consumers are not willing to pay more for frozen meat, regardless the increase in food safety.
- People trust that food sold in NL is safe
Economic evaluation

- All available input and output from the models are collected in an Excel model

- The net value is assessed by comparing the reference scenario (current situation with no addition measures) with the two interventions including reduced Toxoplasma transmission

- Based on the input parameters, net results are presented in a range with the least and most favourable outcomes

- Price level 2016
Annual costs and benefits freezing meat intervention * €1000

<table>
<thead>
<tr>
<th></th>
<th>Steak tartare</th>
<th>Beef steak</th>
<th>Lamb chop</th>
<th>Leg of mutton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakeholders</td>
<td>Min</td>
<td>Max</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Freezing companies</td>
<td>-975</td>
<td>-89</td>
<td>-4,811</td>
<td>-626</td>
</tr>
<tr>
<td></td>
<td>+975</td>
<td>+89</td>
<td>+4,811</td>
<td>+626</td>
</tr>
<tr>
<td>Consumers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freezing costs</td>
<td>-975</td>
<td>-89</td>
<td>-4,811</td>
<td>-626</td>
</tr>
<tr>
<td>DALYs averted</td>
<td>10,408</td>
<td>15,612</td>
<td>190</td>
<td>286</td>
</tr>
<tr>
<td>Patient costs</td>
<td>12</td>
<td>24</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Productivity losses</td>
<td>199</td>
<td>362</td>
<td>3.6</td>
<td>6.6</td>
</tr>
<tr>
<td>Consumer surplus</td>
<td>-907</td>
<td>-112</td>
<td>-2,722</td>
<td>-622</td>
</tr>
<tr>
<td>Government</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthcare costs</td>
<td>1,836</td>
<td>15,136</td>
<td>33.6</td>
<td>277</td>
</tr>
<tr>
<td>Special education costs</td>
<td>3.2</td>
<td>143.3</td>
<td>0.06</td>
<td>2.6</td>
</tr>
<tr>
<td>Net benefits</td>
<td>10,576</td>
<td>31,077</td>
<td>-7305</td>
<td>-625</td>
</tr>
</tbody>
</table>
Annual costs and benefits biosecurity intervention * €1000

<table>
<thead>
<tr>
<th></th>
<th>Biosecurity intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stakeholders</td>
<td>Min</td>
</tr>
<tr>
<td>Farmers</td>
<td>-2,103</td>
</tr>
<tr>
<td>Slaughterhouses</td>
<td>-439</td>
</tr>
<tr>
<td></td>
<td>+439</td>
</tr>
<tr>
<td>Consumers</td>
<td></td>
</tr>
<tr>
<td>- Intervention costs</td>
<td></td>
</tr>
<tr>
<td>slaughterhouses</td>
<td>-439</td>
</tr>
<tr>
<td>- DALYs averted</td>
<td>16</td>
</tr>
<tr>
<td>- Patient costs</td>
<td>0.02</td>
</tr>
<tr>
<td>- Productivity losses</td>
<td>0.3</td>
</tr>
<tr>
<td>Government</td>
<td></td>
</tr>
<tr>
<td>- Healthcare costs</td>
<td>3</td>
</tr>
<tr>
<td>- Special education costs</td>
<td>0.006</td>
</tr>
<tr>
<td>Net costs/benefits</td>
<td>-2,525</td>
</tr>
</tbody>
</table>
To conclude

- Freezing meat is more effective than enhancing biosecurity to prevent toxoplasmosis

- A low effectiveness of biosecurity intervention was assumed, only 1%. Possibly in future results can be adjusted in a positive way

- Freezing filet américain and leg of mutton result in net benefits to society

- Surprisingly, consumers are *not* intended to buy industrially frozen (and thawed) meat
A social cost-benefit analysis of two One Health interventions to prevent toxoplasmosis

Anita W. M. Suijkerbuijk1, Eelco A. B. Over1, Marieke Opsteegh1, Huifang Dong1, Paul F. van Gils1, Axel A. Bonačić Marinović1, Mattijs Lambooij2, Johan J. Polder1, Talitha L. Feenstra1, Joke W. B. van der Giessen1, G. Ardine de Wit1*1, Marie-Josee J. Mangen1

1 National Institute for Public Health and the Environment, Bilthoven, the Netherlands, 2 Tilburg University, Tilburg, the Netherlands, 3 University of Groningen, Department of Epidemiology, Groningen, the Netherlands, 4 University Medical Center Utrecht, Julius Centre for Health Sciences and Primary Care, Utrecht, the Netherlands

* anita.suijkerbuijk@rivm.nl

Abstract

Contents lists available at ScienceDirect

Meat Science

journal homepage: www.elsevier.com/locate/meatsci

Consumers' preferences for freezing of meat to prevent toxoplasmosis - A stated preference approach

Mattijs S. Lambooij1,*, Jorien Veldwijk, Paul van Gils, Marie-Josee J. Mangen, Eelco Over1, Anita Suijkerbuijk1, Johan Polder1, G. Ardine de Wit1, Marieke Opsteegh1

1 National Institute for Public Health and the Environment, Bilthoven, The Netherlands
2 Erasmus School of Health Policy & Management (ESHPM), Erasmus University, The Netherlands
3 Tilburg University, Tilburg, School of Social and Behavioral Sciences, Tilburg, the Netherlands
4 University Medical Center Utrecht, the Netherlands, Julius Center for Health Sciences and Primary Care, The Netherlands
Media attention

RIVM: invriezen filet americain scheelt honderden ziektegevallen

Het invriezen van filet americain kan een infectieziekte voorkomen die jaarlijks bij honderden Nederlanders leidt tot ernstige gezondheidsproblemen. Dat stelt het Rijksinstituut voor Volksgezondheid en Milieu (RIVM) in een studie die is gepubliceerd in het wetenschappelijk tijdschrift *Plos One*.
Relevance for other countries?
Danke für Ihre Aufmerksamkeit!

And many thanks to all colleagues who collaborated in this project:

Axel Bonačić Marinović
Jenny Deng
Talitha Feenstra
Joke van der Giessen
Paul van Gils
Titia Kortbeek
Mattijs Lambooij
Marie-Josee Mangen
Marieke Opsteegh
Eelco Over
Johan Polder
Ardine de Wit