

10th Berlin Workshop on Developmental Toxicology Linking test systems to the prediction of DNT

Marcel Leist Professor for In Vitro Toxicology and Biomedicine Chair inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Germany

young neurons forming projections

two neural crest cells with elaborate cytoskeleton

central neural precursor cells, forming a tissue

Network (6 days later)

DoD7

the is all nice, but the case (201201...) neither think not teel not tell not seen not seen

A bit of model theory.....

Type 1 (replica models): ,look similar'

Advantages: no need to know, how car functions

Disadvantages: may give wrong answers (e.g. concerning car crashes)

Assumption: if it looks like reality, it will behave like reality under challenge

Type 2 (concept models): ,function similarly'

a ,crash test dummy'

Advantages:	measurement and <u>prediction</u> of complex events
Disadvantages:	 does not look like reality need to know how model and reality function works only for very specific questions

Assumption: it functions like reality,

Different approaches to toxicity testing

Type 2 models (function similarly)

Different approaches to toxicity testing

Type 1 models (,look' similarly)

Input \rightarrow Output relation for animal = man

"Early" animal-free tests

- skin irritation
- eye irritation
- genotoxicity
- etc.

Type 2 models (function similarly)

Complex animal-free tests

- non-genotoxic cancer
- developmental toxicity
- organ toxicity

- etc.

Approaches to use functional testing for hazard assessment (= use of new approach methods (NAM); mechanistic assays)

Approaches to use functional testing for hazard assessment (= use of new approach methods (NAM); mechanistic assays)

Principle:

,process control' instead of ,end stage control'

Assumption I: there are key neurodevelopmental processes required to form a fully functional and intact nervous system.
 Assumption II: if key neurodevelopmental processes are disturbed, functional or structural deficits may arise.

Procedure: define and establish test methods for key neurodevelopmental processes and evaluate interference by test chemicals

Overview: a process control-based test strategy for DNT

13

Key neurodevelopmental processes

Eventually, any DNT finding (man or animal) must be due to a combination of disturbed neurodevelopmental processes

In vivo Finding	Disturbed neurodevelopmental processes
Brain weight up/down	Proliferation, Apoptosis
Holoprosencephaly	Apoptosis, Neurodifferentiation
Lissencephaly	Apoptosis, Neurodifferentiation, Migration
Neuroinflammation	Astrocyte activation, Gliosis, Neurodegneration
Cortical layer thickness	Proliferation, Migration, Myelination
Disturbed reflexes	Neurodifferentiation, Myelination, Synaptic transmission
Anxiety behaviour	Neurodifferentiation, Synaptic transmission, Synapse formation

If a compound does not disturb at least one process, it cannot be associated with a DNT hazard

1. NTP screen battery (international contributions and data base)

TOXICOLOGICAL SCIENCES, 167(1), 2019, 6-14

doi: 10.1093/toxsci/kfy278 Advance Access Publication Date: November 28, 2018 Forum

FORUM

Screening for Developmental Neurotoxicity at the National Toxicology Program: The Future Is Here

Mamta Behl,^{*,1} Kristen Ryan,* Jui-Hua Hsieh,[†] Frederick Parham,* Andrew J. Shapiro,* Bradley J. Collins,* Nisha S. Sipes,* Linda S. Birnbaum,* John R. Bucher,* Paul M. D. Foster,* Nigel J. Walker,* Richard S. Paules,* and Raymond R. Tice[‡]

^{*}Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research

2. OECD-coordinated program (with EPA, EFSA, JRC etc..)

TOXICOLOGICAL SCIENCES, 167(1), 2019, 45-57

doi: 10.1093/toxsci/kfy211 Advance Access Publication Date: November 23, 2018 Forum

FORUM

International Regulatory and Scientific Effort for Improved Developmental Neurotoxicity Testing

Magdalini Sachana,^{*,1} Anna Bal-Price,[†] Kevin M. Crofton,[‡] Susanne H. Bennekou,[§] Timothy J. Shafer,[¶] Mamta Behl,[∥] and Andrea Terron^{∥∣}

*Organisation for Economic Co-Operation and Development (OECD), 75775 Paris Cedex 16, France; [†]European Commission Joint Research Centre, Health, Consumers and Reference Materials, Unit Chemicals Safety and Alternative Methods I-21027 Ispra (VA), Italy; [†]R3Fellows, LLC, Durham, North Carolina, USA; [§]Danish Environmental Protection Agency, Haraldsgade 53, DK - 2100, Copenhagen, Denmark; [¶]U.S. Environmental Protection Agency (EPA), Office of Research and Development, Research Triangle Park, North Carolina 27711, USA; [¶]Division of the National Toxicology Program, National Institute of Environmental Health Sciences Research Triangle Park, North Carolina, 27709 USA; and ^{|||}European Food Safety Authority, Via Carlo Magno, 1A, 43126, Parma, Italy

2. OECD-coordinated program (with EPA, EFSA, JRC etc..)

EFSA / DK-EPA screen battery (at IUF and UKN)

IUF: Leibnitz Institute Düsseldorf, UKN: University Konstanz, EPA: US environmental protection agency, JRC: EURL-ECVAM laboratories

2. OECD-coordinated program (with EPA, EFSA, JRC etc..)

EFSA / DK-EPA screen battery (at IUF and UKN)

test compounds

assays

3. SysDT project of the BMBF

Archives of Toxicology (2020) 94:151–171 https://doi.org/10.1007/s00204-019-02612-5

IN VITRO SYSTEMS

Development of a neural rosette formation assay (RoFA) to identify neurodevelopmental toxicants and to characterize their transcriptome disturbances

Nadine Dreser¹ · Katrin Madjar² · Anna-Katharina Holzer¹ · Marion Kapitza¹ · Christopher Scholz¹ · Petra Kranaster^{1,7} · Simon Gutbier^{1,8} · Stefanie Klima¹ · David Kolb^{3,9} · Christian Dietz^{3,9} · Timo Trefzer^{1,10} · Johannes Meisig⁴ · Christoph van Thriel⁵ · Margit Henry⁶ · Michael R. Berthold³ · Nils Blüthgen⁴ · Agapios Sachinidis⁶ · Jörg Rahnenführer² · Jan G. Hengstler⁵ · Tanja Waldmann¹ · Marcel Leist¹

Universities of Konstanz, Köln, Dortmund Charité Berlin, IfADO Dortmund associated: Roche (Basel)

BMBF: German ministry of science and technology

4. DNT meeting series and CAAT workshops

5th International Conference on Developmental Neurotoxicity (DNT) Test

Significant and the second and the s Michael Aschner¹, Sandra Ceccatelli², Mardas Daneshian³, Ellen Fritsche⁴, Abby Li⁸, Mardas Daneshian³, Marcel Leist^{3,6,7}, Abby Li⁸, Mardas Daneshian³, Marcel Leist^{3,6,7}, Abby Li⁸, Mardas Daneshian³, Marcel Leist^{3,6,7}, Abby Li⁸, Helena T. Hogberg⁵, Marcel Leist^{3,6,7}, Abby Li⁸, Helena T. Hogberg⁵, Marcel Leist^{3,6,7}, Abby Li⁸, Helena T. Hogberg⁵, Marcel Leist^{3,6,7}, Abby Li⁸, Marchael Aschner¹, Sandra Ceccatelli², Mardas Daneshian³, Marcel Leist^{3,6,7}, Abby Li⁸, Helena T. Hogberg⁵, Marcel Leist^{3,6,7}, Abby Li⁸, Helena T. Hogberg⁵, Marcel Leist^{3,6,7}, Abby Li⁸, Helena T. Hogberg⁵, Marcel Leist^{3,6,7}, Abby Li⁸, Marchael Aschner¹, Sandra Ceccatelli², Mardas Daneshian³, Marcel Leist^{3,6,7}, Abby Li⁸, Helena T. Hogberg⁵, Abby Li⁸, Abby Li⁸

Cellular model: Neural differentiation from iPSC

hiPSC

day -3

day 6

differentiation

functional anchoring

Rosettes day 15

Model readouts and examples for current challenges

3. In vitro – in vivo extrapolation (with barriers of placenta and brain)

1. Robust quantification (with uncertainties)

Acknowledgement

Bundesministerium für Bildung und Forschung

NTP National Toxicology Program

DOERENKAMP-ZBINDEN

Ministry of Environment and Food of Denmark Environmental Protection Agency

LEIBNIZ-INSTITUT FÜR UMWELT-MEDIZINISCHE FORSCHUNG

UF