

Printed Ion-Selective Sensors for Precision Agriculture 4th Joint BfR/Fraunhofer Symposium on Nanotechnology Berlin, 31 May 2022

Susanne Oertel, <u>Michael Jank</u> Fraunhofer Institute for Integrated Systems and Device Technology IISB

Overview

- Research Project "FutureIOT"
- Sensor Networks for Soil Monitoring
 - Motivation
 - Vision
- Sensors
- Communication
- Summary and Outlook

Michael Jank | 4th BfR/FNT Nano Symposium | Printed Ion-Selective Sensors for Precision Agriculture 31 May 2022

FutureIOT – Smart Networks for Cities and Agriculture

- Bavarian research project FutureIOT (Partners from industry (24) and academia (10), >4 M€) covers the entire IoT value chain:
 - Sensors
 - Communications
 - Localization
 - Data Security
 - IoT Platforms
- <u>Smart agriculture</u> as a vertical topic
 - Soil monitoring
 - Cattle tracking

Fraunhofer FutureIOT

Motivation and Vision

- Contamination of ground water with nitrate
 - Caused by leaching of mineralized Nfertilizer
 - Critical situation in "red areas"
 - More restrictions/limitations for farmers
 - Frequently nitrate soil control measures

Vision:

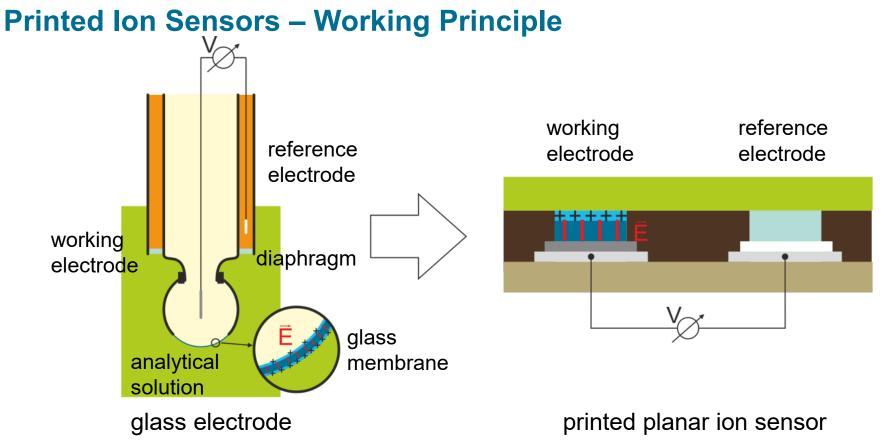
- cost-effective, simple and continuous monitoring of nutrient supply in soils
- basis for demand-based fertilization

Research Approaches 1/2

- R&D towards sensor nodes for continuous, local acquisition of soil parameters
- Integration with IoT systems
- Continuous monitoring of nitrogen content in soil by electrochemical sensors
 - Combination of IISB proprietary sensors for nitrate and ammonium
 - Integration with electronic system
 - Connection to IOT platform
- Portable measurement equipment for on-site and real-time determination of N_{min} content

Research Approaches 2/2

- Wireless radio transmission out of soil
 - Use of commercially available sensors for soil humidity and conductivity
 - Data transfer from different soil depths by Low Power Wide Area Network (LPWAN) technology
 - Connection to IOT platform
- Buried measurement equipment for on-site and real-time determination of soil parameters



NITROGEN SENSORS

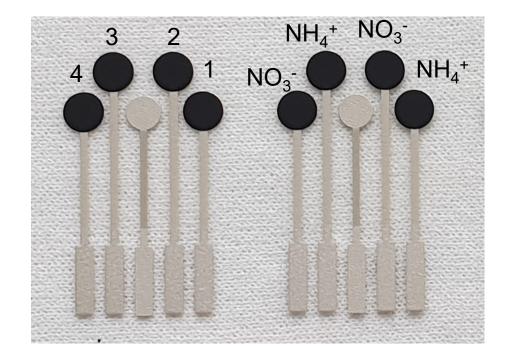
Michael Jank | 4th BfR/FNT Nano Symposium | Printed Ion-Selective Sensors for Precision Agriculture 31 May 2022

Michael Jank | 4th BfR/FNT Nano Symposium | Printed Ion-Selective Sensors for Precision Agriculture 31 May 2022

Fraunhofer FutureIOT IISR

Sensor Fabrication

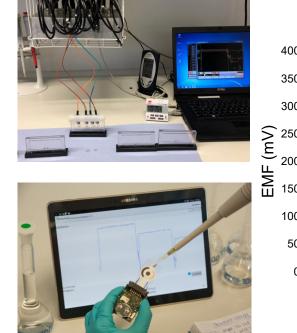
- Screen-printed sensor electrodes
 - Working electrode (ISE): silver (Ag), carbon (C)
 - Reference paste (RE): silver/silver chloride (Ag/AgCI)
 - Polymer encapsulant
- Substrate: PET, PEN, PI
 - Layer annealing: 130 °C, 5 to 15 min
- Functionalization of RE and ISE
 - ISE: drop-casting of ionophore in polymer matrix
 - Functionalized RE

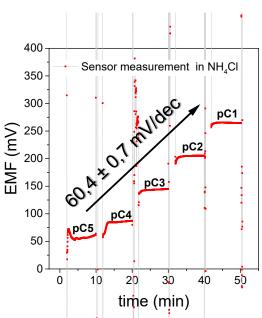

31 May 2022

Fraunhofer FutureIOT

Multisensors for NH_4^+ and NO_3^- lons

- Parallel measurement of NO₃⁻ and NH₄⁺
- Working electrodes:
 - AE1 & 3 for NH₄⁺
 - AE2 & 4 for NO₃⁻
 - optional: K⁺, Cl⁻, Na⁺
- tailored functionalization is possible



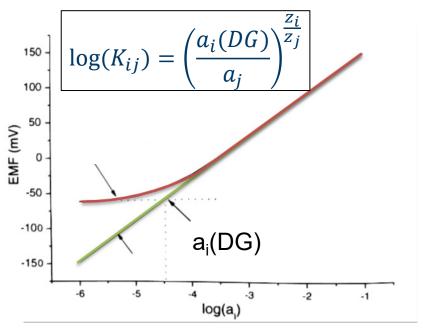

Printed Ion Sensors - Characterization

- Laboratory setup
 - parallel testing (up to 15 devices)
 - variation of target concentration
- Potentiometric response
 - Following Nernst equation

 $E = E_0 + 2.303 \frac{RT}{Fz_i} \log(a_i)$

ideally 59.2 mV/decadeHigh resolution, direct read-out

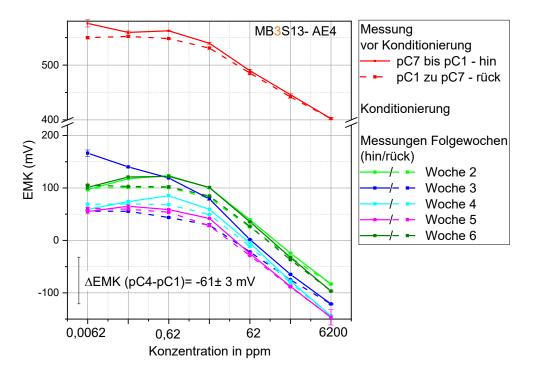
Fraunhofer FutureIOT


IISR

Cross-sensitivity against CI⁻

- Test solutions
 - pC7 until pC1 NH₄NO₃ standards preparation and pC2 oder pC3 CaCl₂ addition
- 0,01mol/I CaCl₂ –solution
 - log(K_{ij})= -2,6 ± 0,06
 - K_{ij}= 0,0028 ± 0,0004 (K_{ij} <1)</p>
- 0,001mol/l CaCl₂-solution
 - log (K_{ij})= -1,9 ± 0,12
 - K_{ij}= 0,024 ± 0,004 (K_{ij} <1)</p>
- K_{ij} <1 means: sensors are more selective against primary than against secondary (interfering) ion (CI⁻)

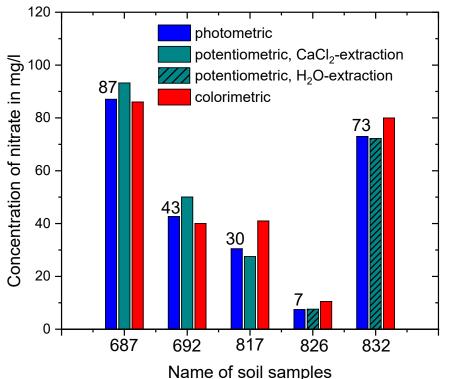
Fixed Interference Method


* G. Schwedt, T. C. Schmidt, O.J. Schmitz "Analytische Chemie - Grundlagen, Methoden und Praxis"

Michael Jank | 4th BfR/FNT Nano Symposium | Printed Ion-Selective Sensors for Precision Agriculture Sensors for Precision Agriculture State (2016) 31 May 2022

Long Term Stability

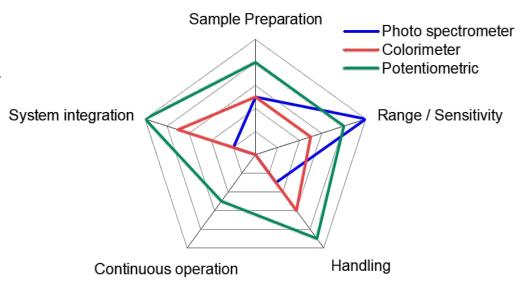
- Preconditioning in NH₄NO₃
- Nitrate sensors applied for 6 weeks potentiometric mesurement
- Nitrate range from pC7 →0,0062 ppm until pC1→ 6200ppm
- Nernstian gradient of -61 mV/dec, excellent linearity for > 6,2 ppm
 - curve drift can be suppressed by developed contitioning routine



Nitrate Content in Soil Samples

- Real-time space-resolved monitoring of nitrate concentration in agri- and horticulture
 - Fast response time
 - Low preparation effort
- Benchmarking against state-of-the-art or approved techniques
 - Photometry (spectroscopic)
 - Colorimetry (test strip)

NO₃⁻: in <5min similar values like photometric values from test lab (t~24 hrs.)

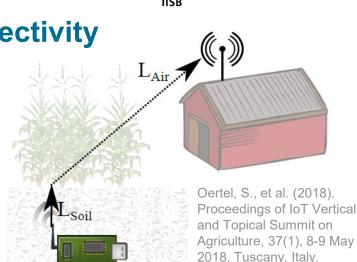


Nitrate Content in Soil Samples

- Real-time space-resolved monitoring of nitrate concentration in agri- and horticulture
 - Fast response time
 - Low preparation effort
- Benchmarking against state-of-the-art or approved techniques
 - Photometry (spectroscopic)
 - Colorimetry (test strip)

RADIO TRANSMISSION OUT OF SOIL

Michael Jank | 4th BfR/FNT Nano Symposium | Printed Ion-Selective Sensors for Precision Agriculture 31 May 2022


Soil-Dashboard

- Continuous data transfer from soil
 - Use of commercially available sensors for humidity and conductance
 - Data transfer out of different soil depths
 - Transfer with Low Power Wide Area Network (LPWAN) technology
 - Optimal transmission frequency

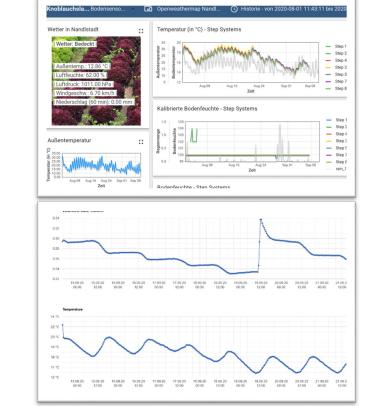
LPWAN for Reliable Underground Connectivity

- Sensors to be buried within the soil will require
 - Autonomous operation over years using tiny batteries
 - Robust communication schemes for overcoming the high path-loss within the soil
- LPWANs are a new communication approach that covers the requirements, as they are optimized for
 - Very high maximum coupling loss
 → soil attenuation
 - Very low complexity → low cost and low energy
- FutureIOT developed LPWAN sensing nodes based on ETSI TS 103 357; > 5 km of comms ability

Fraunhofer Future

Images: Fraunhofer IISB Humidity soil sensor with data transfer via LPWAN, Display at App

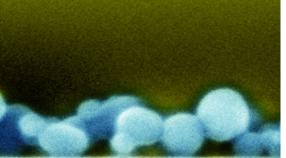
Fraunhofer FutureIOT

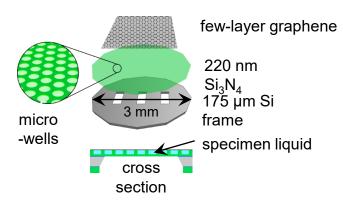

IoT Platform for soil humidity, temperature and further

important data

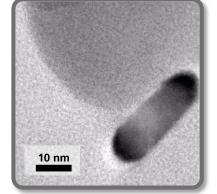
Summary and Future Work

- New soil monitoring solutions for agriculture
 - Development of nitrogen sensors, similar results to certified test lab
 - Long-term stable and reproducible nitrate and ammonium sensors
 - Feasibility of LPWAN transmission from soil proven
 - IoT platform in operation
- Adaption of sensor systems for prospective agricultural applications
 - Fixed base technology
 - Customizable based on customer requirements

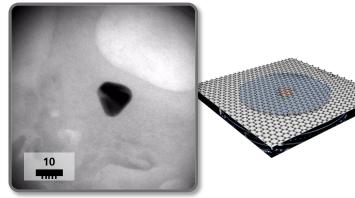



Dr. Michael Jank Fraunhofer Institute for Integrated Systems and Device Technology IISB Schottkystr. 10, 91058 Erlangen, Germany Susanne.oertel@iisb.fraunhofer.de

www.futureiot.de

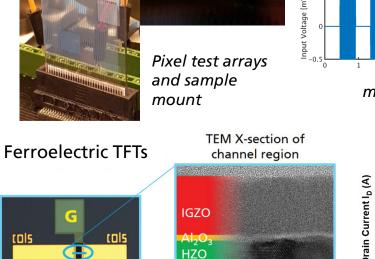


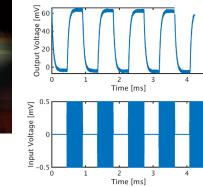
NANO MATERIALS RESEARCH

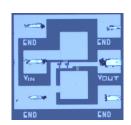


Hutzler et al., Nano Lett. 2018, 18, 7222–7229; Adv. Mater. Interfaces, 345, p. 1901027

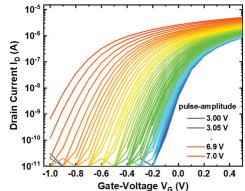
Core shell growth of nanoparticles




Interface reaction pathways



ACTIVE **MATRICES AND ADVANCED TFTs**


cols.

metal oxide rf circuits (OOK demodulator)

Lehninger et al. | DOI:10.1002/aelm.202100082

1<u>0 nm</u>

IISB