Textile Functionalization and its Effects on the Release of Silver Nanoparticles into Artificial Sweat

Heike Romanowski
Content

1. Background Functionalization of Textiles

2. Experimental Setup

3. Results

4. Conclusion
1. Background Functionalization of Textiles

2. Experimental Setup

3. Results

4. Conclusion
Nano Textiles – Application Examples

<table>
<thead>
<tr>
<th>Properties of nano textiles</th>
<th>Nanomaterial</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV protection</td>
<td>TiO$_2$</td>
</tr>
<tr>
<td></td>
<td>ZnO</td>
</tr>
<tr>
<td>Thermally conductive/insulating</td>
<td>CNT</td>
</tr>
<tr>
<td>Moisture-absorbing</td>
<td>TiO$_2$</td>
</tr>
<tr>
<td>Antibacterial</td>
<td>Ag</td>
</tr>
<tr>
<td></td>
<td>TiO$_2$</td>
</tr>
<tr>
<td></td>
<td>ZnO</td>
</tr>
<tr>
<td>Self-cleaning/dirt and water repellent</td>
<td>CNT</td>
</tr>
<tr>
<td></td>
<td>SiO$_2$</td>
</tr>
<tr>
<td></td>
<td>TiO$_2$</td>
</tr>
</tbody>
</table>
Risks (Nano)-silver

Risks:
- Silver ions can damage living cells
- Resistance to silver and antibiotics in microorganisms

Recommendation:
Avoid (Nano)-silver in food and everyday products
Motivation

Better understanding of:
- Consumer Ag exposure
- Ag release from textile
- Influence of the functionalization

Different functionalization techniques

<table>
<thead>
<tr>
<th>composites</th>
<th>coating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particles embedded within textile fiber</td>
<td>Particles on fiber surface</td>
</tr>
</tbody>
</table>
1. Background Functionalization of Textiles

2. Experimental Setup

3. Results

4. Conclusion
Experimental Setup: 10 different Textiles

4 commercially available
• Towel
• Socks
• Sports shirt
• Pillow

6 laboratory-prepared
• 2 Ag composites
• 3 Ag coatings
• 1 untreated
Experimental Setup

Characterization of Textiles

Visualization of NPs on textile surface
- environmental scanning electron microscopy (ESEM) with energy dispersive X-ray spectroscopy (EDX)
- time-of-flight secondary ion mass spectrometry (ToF-SIMS)

Quantification of total Ag Content
- Digested in microwave oven / ICP-MS
Experimental Setup

Characterization of Textiles

Visualization of NPs on textile surface
- environmental scanning electron microscopy (ESEM) with energy dispersive X-ray spectroscopy (EDX)
- time-of-flight secondary ion mass spectrometry (ToF-SIMS)

Quantification of total Ag Content
- Digested in microwave oven / ICP-MS

Migration

Textile covered with artificial sweat (pH 5.5 and pH 8) for 24h/48h
- Release of total Ag into sweat → Artificial sweat analyzed with ICP-MS
- Release of particulate Ag into sweat → Artificial sweat analyzed with spICP-MS (single particle mode)
Content

1. Background Functionalization of Textiles
2. Experimental Setup
3. Results
4. Conclusion
Characterization of Textiles: Visualization of NPs on textile surface

<table>
<thead>
<tr>
<th></th>
<th>Visualization of NPs on textile surface</th>
<th>Quantification of total Ag Content (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towel</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Socks</td>
<td>✔ (a few particles)</td>
<td></td>
</tr>
<tr>
<td>Sport shirts</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>Pillow</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>T-L-1 (composite)</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>T-L-2 (composite)</td>
<td>Not analyzed</td>
<td></td>
</tr>
<tr>
<td>T-L-3 (coating)</td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>T-L-4 (coating)</td>
<td>Not analyzed</td>
<td></td>
</tr>
<tr>
<td>T-L-5 (coating)</td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>
Characterization: Larger numbers of Ag particles on commercial textiles compare to lab-prepared nano-composite

ESEM images with EDX-spectra of a pillow (T-C-1), a sports shirt (T-C-4) and a lab-prepared nano-composite textile (T-L-1).

Characterization: Difference between Ag-NP and AgCl coated textiles

ToF-SIMS images of lab coated textiles with large aggregates for nano-Ag (T-L-3) and a very thin film for AgCl (T-L-5)

Characterization of Textiles: Quantification of total Ag Content

<table>
<thead>
<tr>
<th></th>
<th>Visualization of NPs on textile surface</th>
<th>Quantification of total Ag content (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towel</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Socks</td>
<td>✓ (a few particles)</td>
<td>Below LOD</td>
</tr>
<tr>
<td>Sport shirts</td>
<td>✓</td>
<td>14.2</td>
</tr>
<tr>
<td>Pillow</td>
<td>✓</td>
<td>23.5</td>
</tr>
<tr>
<td>T-L-1 (composite)</td>
<td>✓</td>
<td>128.0</td>
</tr>
<tr>
<td>T-L-2 (composite)</td>
<td>Not analyzed</td>
<td>132.8</td>
</tr>
<tr>
<td>T-L-3 (coating)</td>
<td>✓</td>
<td>12.4</td>
</tr>
<tr>
<td>T-L-4 (coating)</td>
<td>Not analyzed</td>
<td>14.9</td>
</tr>
<tr>
<td>T-L-5 (coating)</td>
<td>✓</td>
<td>26.6</td>
</tr>
</tbody>
</table>
Migration into sweat: Comparison Ag release from coating vs composites

Migration into sweat:
No significant pH-related influence

Content

1. Background Functionalization of Textiles

2. Experimental Setup

3. Results

4. Conclusion
Conclusion

• Ag functionalized textiles release Ag
• Predominantly release of ions
• But also particulate Ag was identified
• Functionalization type influences released amount
 → Higher release for coated textiles vs nanocomposites
Thank you for your attention!

Heike Romanowski

Bundesinstitut für Risikobewertung
Abteilung 7: Chemikalien- und Produktsicherheit
Fachgruppe 75: Produktbeschaffenheit und Nanotechnologie
Max-Dohrn-Straße 8-10, 10589 Berlin
Telefon 030 - 184 12 - 27524
heike.romanowski@bfr.bund.de