



#### **Canadian Total Diet Study**

## Robert Dabeka, Thea Rawn, Xu-Liang Cao, Chris Mason

Food Research Division Bureau of Chemical Safety Food Directorate Health Canada

YOUR HEALTH AND SAFETY ... OUR PRIORITY.

## Federal Food Safety In Canada Health Canada

**Food Directorate** 

 Sets food safety policies (conducts research, risk assessments, sets regulations, guidelines, recommends risk management measures)

Canadian Food Inspection Agency

- Enforces food safety regulations and conducts food monitoring

## **Toxic Chemicals In Foods**

Food Directorate Bureau Of Chemical Safety

**Food Research Division** 

Human dietary exposure to chemicals (Canadian total diet study - TDS)

Regulatory Toxicology Research Division Toxicological research on chemicals

Chemical Health Hazard Assessment Division Risk assessment and regulations

## **TDS Objectives**

Representative background concentrations of priority chemicals in prepared foods

Estimate of the dietary intake of priority chemicals by average Canadians in different age/sex groups

Identify unexpected contamination, and time trends of dietary intakes and chemical concentrations in primary foods.

#### **TDS Sampling Cities**



## **Canadian Statistics**

- Population 38.24 million
- Area 9.98 million sq. km
- 5,500 km east-west coast to coast
- 4,600 km north-south
- 22% of the population are immigrants from over 140 different countries
- 5% of the population are indigenous peoples
- 18% of population rural

### **Canada – Food and Diet Trivia**

#### **Food consumption**

- 75% of fresh vegetables eaten in Canada are imported
- Canada imports food from about 160 countries

## **TDS Objectives**

Representative background concentrations of priority chemicals in prepared foods

Estimate of the dietary intake of priority chemicals by average Canadians in different age/sex groups

Identify unexpected contamination and time trends of dietary intakes and chemical concentrations in primary foods with time. Objective: Representative background concentrations of priority chemicals in prepared foods

## Canadian TDS:

- 1. One city once a year over 7 weeks (representation not seasonal or regional)
- 2. 244 different foods
- 3. 4 stores/brands of each food to prepare 1 composite (definitely not statistical?)
- 4. End up with 159 food composites for analysis
- 5. Analyse food composites using highsensitivity methods

## **Chemicals Included in Canadian TDS**

- Pesticides (registered and nonregistered)
- Polychlorinated biphenyls (PCBs)
- Chlorinated dioxins and dibenzofurans (dioxins)
- Polybrominated diphenyl ethers (PBDEs) (flame retardants)
- Trace elements (e.g. Pb, Cd, F, As, Hg)
- Perfluorinated compounds
- Ochratoxin-A
- Chemicals transferred from food contact materials (e.g., phthalates, DEHP, bisphenols)
- Volatile organics (toluene)
- Radionuclides

## Analysis

Analyses conducted primarily in Food Research Division by research analysts

<u>Thea Rawn</u>. PCBs, chlorinated dioxins, dibenzofurans, PBDEs, new POPS (perfluorinated organics), legacy and current pesticides <u>Xu-Liang Cao</u>. Phthalates, bisphenols, VOCs <u>Robert Dabeka</u> -Trace elements <u>Stephen Kiser</u> (RPB) Radionuclides

## Analysis

#### **Objective**

 Achieve sufficiently low LODs to actually measure the background concentrations of the chemicals

#### **Characteristics**

 Expensive, sensitive instrumentation, high complexity (preconcentration, separation, contamination control), and high analytical expertise

#### Rationale

- Can't identify a contaminated sample if you don't know the chemical concentration of an uncontaminated one
- Improve accuracy of dietary intake estimations

## Lead results, ng/g, and precision for TDS milk composites – 2017 TDS

|                   | Duplic | %RSD |      |
|-------------------|--------|------|------|
| Milk, whole       | 0.15   | 0.17 | 8.8  |
| Milk, 2%          | 0.12   | 0.11 | 6.1  |
| Milk, 1%          | 0.12   | 0.13 | 5.7  |
| Milk, skim        | 0.13   | 0.23 | 39.3 |
| Evaporated milk   | 0.54   | 0.49 | 6.9  |
| Milk baby formula | 1.31   | 1.40 | 4.7  |

Objective: Estimate of the dietary intake of priority chemicals by average Canadians

#### Canadian TDS

- 1. Average food consumption and body weight data for 16 age/sex groups based on 1970-72 survey. Data are old & available for only 127 composites. (Data being updated).
- 2. Deterministic calculations. For each food composite, multiply the concentration of chemical by the amount of composite consumed. Add these over all composites to give the dietary intake by the age/sex group

## Age/Sex Groups And Body Wts, kg

| 0-1 Month M & F    | 3.73  | 20-39 Years M  | 71.3 |
|--------------------|-------|----------------|------|
| 2-3 Months M & F   | 5.66  | 40-64 Years M  | 72.0 |
| 4-6 Months M & F   | 6.81  | 65+ Years M    | 70.3 |
| 7-9 Months M & F   | 8.73  | 12-19 Years F  | 49.9 |
| 10-12 Months M & F | 10.26 | 20-39 Years F  | 57.2 |
| 1-4 Years M & F    | 14,4  | 40-64 Years F  | 61.1 |
| 5-11 Years M & F   | 26.4  | 65+ Years F    | 63.1 |
| 12-19 Years M      | 53.8  | All Ages M & F | 60   |

Nutrition Canada Survey 1970-72, 24-hour recall

#### Concentrations <LOD are reported as LOD for dietary intake calculations

| Conc.<br>ng/g | Food<br>intake (g) | Dietary intake |
|---------------|--------------------|----------------|
| 0             | 100                | 0 ng           |
| <0.3          | 100                | <b>30 ng</b>   |
| <1            | 100                | 100 ng         |
| <10           | 100                | 1000 ng        |

2017 Dietary intakes of Pb, µg/kg/day, by average Canadians and effect of analytical limit of detection. LOD used to calculate dietary intakes when Pb<LOD.

|           | 7 - 9 | 1 - 4 | 12 - 19 | 12 - 19 | All Ages |
|-----------|-------|-------|---------|---------|----------|
|           | Month | Years | Years   | Years   | Cdn.     |
| LOD, ng/g | M & F | M & F | Μ       | F       | M & F    |
| 0         | 0.178 | 0.157 | 0.083   | 0.068   | 0.062    |
| 0.1       | 0.179 | 0.157 | 0.083   | 0.068   | 0.062    |
| 0.5       | 0.197 | 0.173 | 0.089   | 0.072   | 0.065    |
| 1         | 0.233 | 0.204 | 0.100   | 0.081   | 0.075    |
| 3         | 0.429 | 0.353 | 0.157   | 0.125   | 0.123    |

Objective: Identify unexpected contamination and time trends of dietary intakes and chemical concentrations in primary foods with time.

#### Canadian TDS

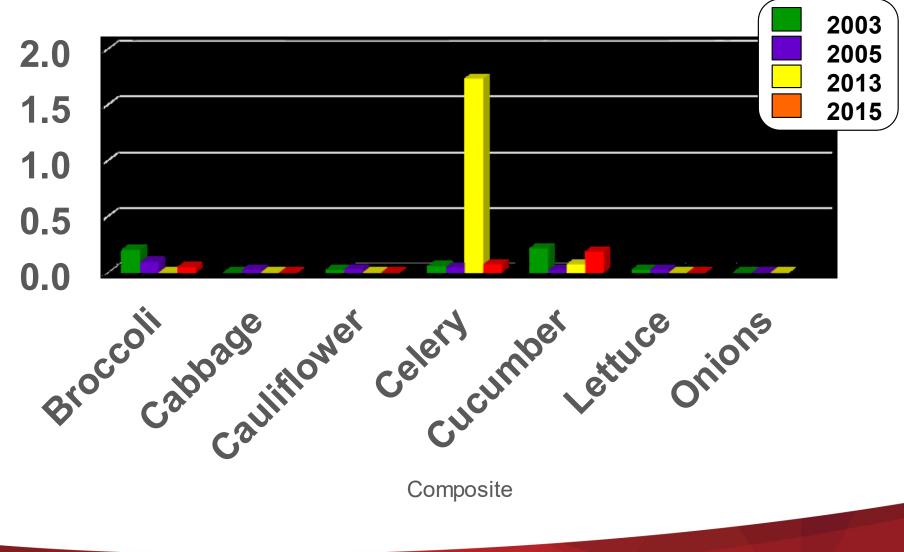
- 1. 4 Brands of each food is optimum to identify if one of the brands is badly contaminated
- 2. Time trends in concentrations for each composite 1 city/4 brands/7 weeks a year
- 3. Time trends in dietary intakes to identify effects of risk management or other factors

Note: Portion of TDS samples are archived frozen at -25C, and are used for retrospective analyses of new priority chemicals.

## **Reporting TDS Results**

Results are posted on Government of Canada website & science publications

• Open Data:


https://www.canada.ca/en/healthcanada/services/food-nutrition/foodnutrition-surveillance/canadian-total-dietstudy.html

- CANLINE:
- <u>https://clin-rcil.hc-sc.gc.ca/clin-rcil/home.do</u>

## **Interpretation of Results**

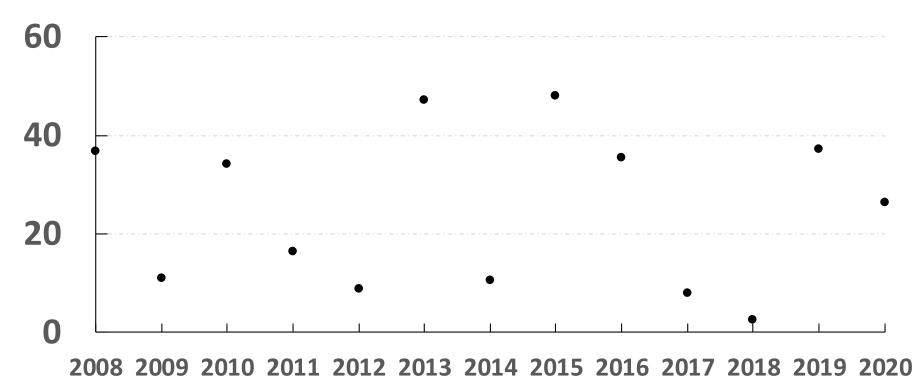
- Tap water from target city and kitchen preparation area are collected and analysed
- Water consumed as water is not included in the calculation of dietary intakes
- Tap water from the lab kitchen in Ottawa is used to prepare the composites (2017, 2018 both tap and deionized water were used)
- Foods prepared in the lab are not seasoned or salted
- To improve statistical power of some chemicals, dietary intakes over several cities (years) should be averaged

## Chlorpyrifos in Vegetables, ng/g



# Concentrations (ng/g) of toluene in selected 2014 TDS samples

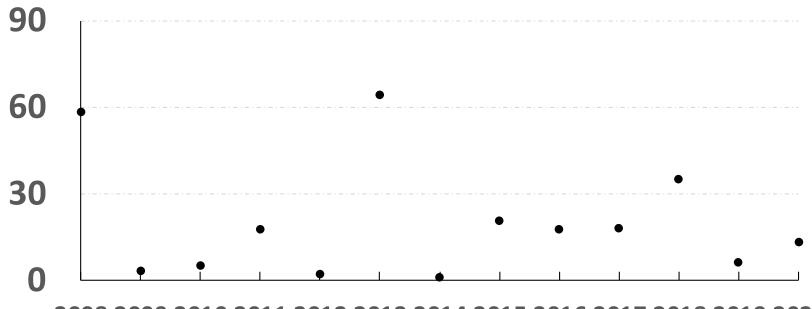
| Composite          | ng/g |
|--------------------|------|
| BEEF STEAK         | 670  |
| VEAL CUTLETS       | 323  |
| FISH, CANNED       | 132  |
| BREAD, WHITE       | 175  |
| BREAD, WHOLE WHEAT | 1974 |
| BREAD, RYE         | 635  |
| CRACKERS           | 4655 |
| PASTA, PLAIN       | 190  |
| HOT DOG            | 100  |
| POTATO CHIPS       | 130  |
| COOKIES            | 269  |


## Concentrations of Di(2ethylhexyl) phthalate (DEHP) in selected vegetable samples from 2013 TDS

| COMPOSITE                 | NG/G |
|---------------------------|------|
| CAULIFLOWER, COOKED & RAW | 305  |
| CORN, FROZEN AND CANNED   | 287  |
| CUCUMBER, RAW AND PICKLED | 675  |
| LETTUCE, RAW              | 657  |
| PEAS, FROZEN AND CANNED   | 613  |
| PEPPERS, RAW              | 502  |
| VEGETABLE JUICE, CANNED   | 682  |
| ASPARAGUS, COOKED         | 409  |
| POTATO, BAKED WITH SKIN   | 222  |
| TOMATOES, COOKED AND RAW  | 405  |






#### BPS, ng/g, in Ground Beef from 2008-2020 TDS



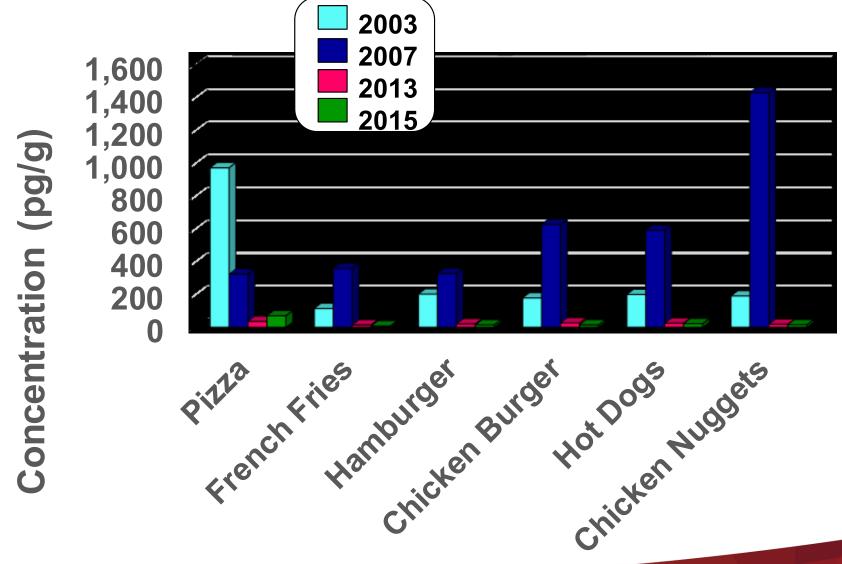
YOUR HEALTH AND SAFETY ... OUR PRIORITY.



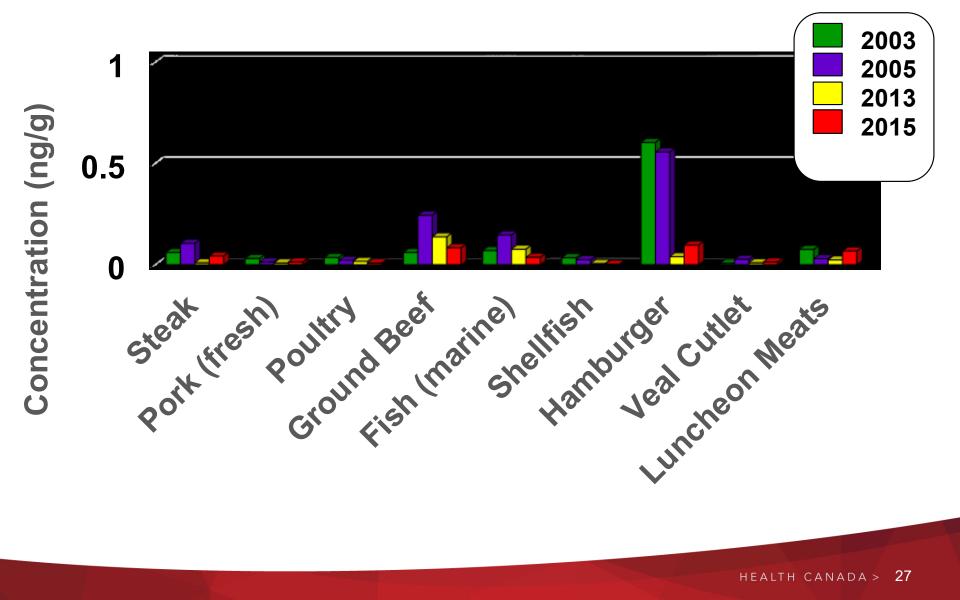
# BPS, ng/g in Beef Steak from 2008-2020 TDS



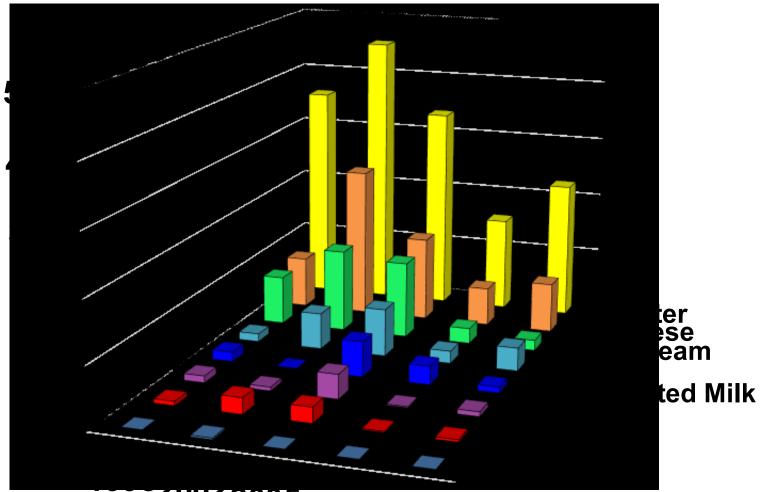
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020


YOUR HEALTH AND SAFETY ... OUR PRIORITY.

Santé

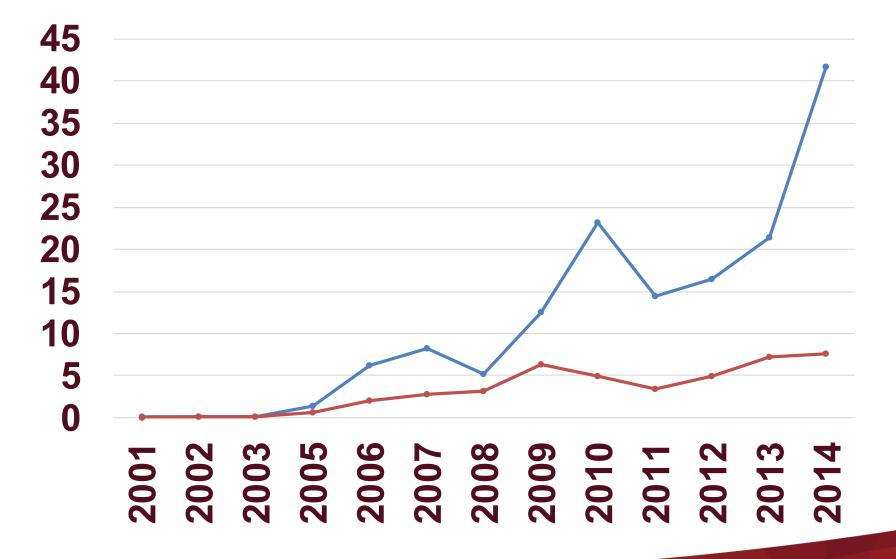

anada

Canada

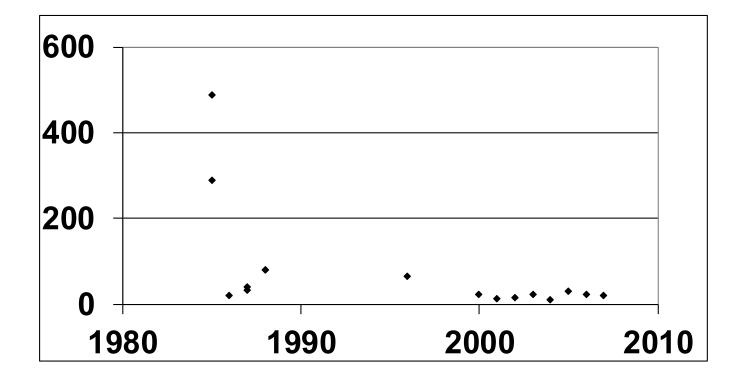

### **ΣPolybrominated Diphenyl Ethers (PBDE) (Σ17 Congeners) – Flame Retardants in Fast Foods**



#### **Dieldrin in Meat/Poultry/Fish TDS Composites**

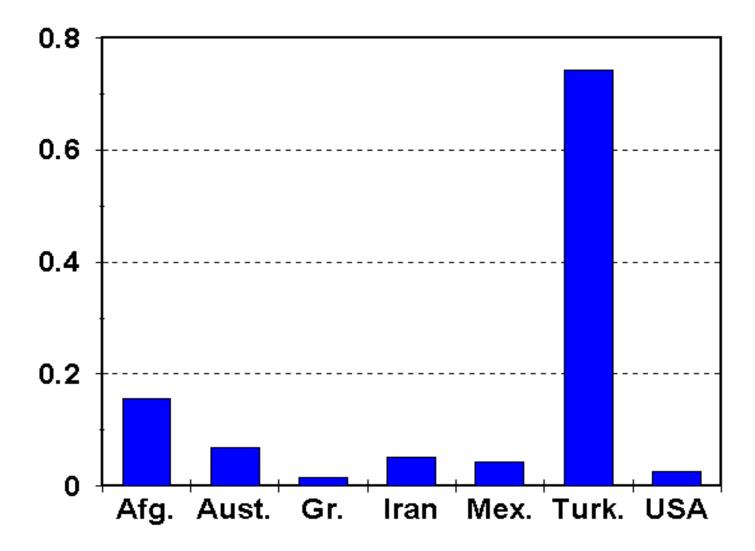



#### **ΣDDT**, ng/g, in TDS Dairy Products Over Time




2002200520132015

## Bismuth, ng/g, in TDS Cheese (blue line) and Cottage Cheese (red line)




#### Lead, ng/g, in TDS Raisin Pie Composite

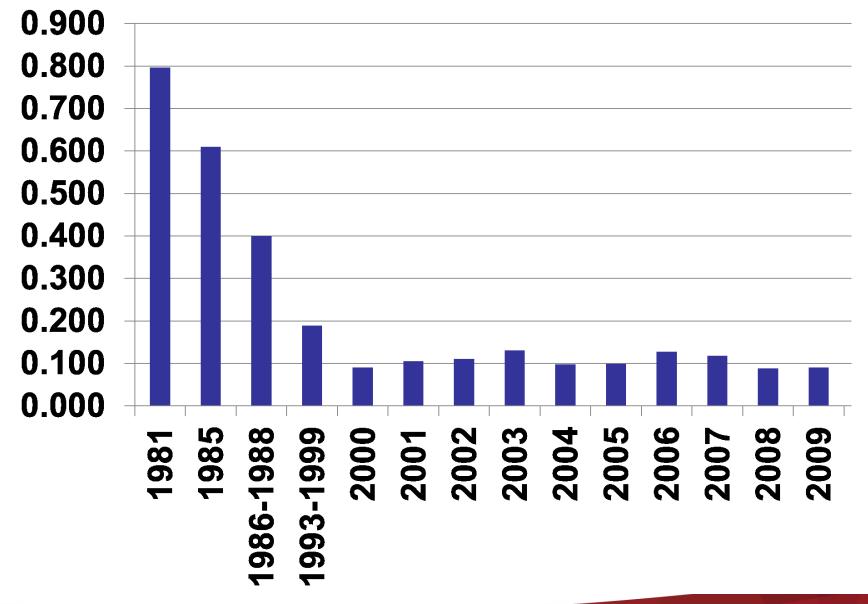


HEALTH CANADA > 30

#### Lead Levels, $\mu g/g$ , in Raisins by Country of Origin



#### Lead in Raisins


Pb levels in TDS raisin pie traced to raisins from Turkey containing up to 3000 ng/g Pb

Importation of raisins containing >500 ng/g Pb stopped

Meetings with raisin exporters in Turkey traced Pb contamination to copper sulfate fungicide sprayed on grapes. Fungicide contaminated with % levels of Pb

Problems with Pb analytical methods in Turkey identified and solved. Importation resumed with verification.

#### All Age Pb dietary intakes, µg/kg/day



#### Dietary Intake of Lead, µg/kg/day, Deterministic vs Probabilistic Calculation

| Deterministic   | Probabilistic  |                             |  |
|-----------------|----------------|-----------------------------|--|
| Average and Age | Median and Age | 95 <sup>TH</sup> Percentile |  |
| 0.157           | 0.195          | 0.363                       |  |
| 1-4 Years       | 0.5-4 Years    | 0.5-4 Years                 |  |
| 0.062           | 0.069          | 0.148                       |  |
| All Ages        | 12+ Years      | 12+ Years                   |  |

Deterministic – 1970-72 food consumption, and body wt., & Pb concentrations from 2017 TDS

Probabilistic – uses 2005 food consumption and body weights and Pb concentrations from TDS and targeted surveys

## Conclusions

TDS chemical concentration data:

- 1. Reliable representation of background concentrations in uncontaminated foods
- 2. Can still identify contaminated samples and time trends

**TDS dietary intake data:** 

- 1. Provide accurate core data for risk assessments
- 2. Can identify time trends and monitor impact of risk management steps

## **Hidden Benefits of the TDS**

- 1. Analysis of archived samples found useful in looking at concentrations of emerging chemicals, such as fluorinated organics.
- 2. The analysis of priority chemicals every year or 2 years ensures availability of analytical expertise to deal with emergencies

## **Future Design Factors**

- 1. Ethnic / regional diets no food consumption surveys available
- 2. Mapping TDS composites to current (2015) food consumption results
- 3. Add drinking water consumed as water
- 4. Incorporating new composites to represent thousands of new products for sale and dietary changes, and balancing this with analytical resources



Photo by Adam Becalski – Ottawa, Halloween