Total Diet Study in Korea:

Progress in last 2 decades and a way forward

Cho-il Kim

Seoul National University

Change in CHO/Protein/Fat Ratio in Energy Intake

101 14.0 10.5 65.6 101 14.0 10.5 65.6 101 10.1 64.0 102 10.1 64.0 103 16.6 65.3 103 16.6 65.6 103 16.6 65.6 103 16.6 65.6 103 16.6 65.6 103 16.6 65.6 103 16.6 65.6 103 16.6 65.6 101 16.6 65.6 101 16.6 65.6 101 16.6 65.6 101 16.6 70.5 102 13.4 14.0 70.5 102 11.4 71.6 75.7 103 11.6 77.3 75.7 103 11.6 77.3 75.7 103 11.6 77.3 75.7 103 11.6 77.3 103	
180 18.0 10.0 66.0 185 16.1 10.1 64.0 194 16.3 10.4 65.3 194 16.6 77.0 77.0 194 16.7 13.4 70.5 196 16.4 13.4 70.5 196 16.4 13.4 70.5 196 16.4 13.4 70.5 196 15.4 13.4 70.5 197 15.6 14.7 60.7 198 15.6 13.4 70.5 198 15.6 13.7 70.9 198 15.6 13.7 70.9 198 15.6 13.7 70.9 199 13.7 70.9 70.9 199 13.7 77.9 70.9 199 13.7 77.9 70.9 199 13.7 9.5 77.9 199 13.7 9.5 77.9 199 13.7 9.5 77.9 199 13.7 9.5 <td< td=""><td></td></td<>	
16.1 10.1 64.8 16.4 16.4 65.3 16.6 16.6 65.6 16.6 16.6 66.2 16.6 13.9 66.2 16.6 13.9 66.2 16.6 13.9 66.2 16.6 13.9 66.2 16.6 14.7 66.6 16.6 14.7 66.7 16.6 14.7 66.7 16.6 14.7 66.7 16.6 14.7 66.7 16.6 14.7 66.7 16.6 14.7 66.7 16.7 14.7 70.9 16.6 14.7 77.0 16.7 11.4 77.3 13.7 9.6 77.3 13.8 9.5 77.3 13.9 11.7 77.9 13.9 11.7 77.9 13.9 11.7 77.9 13.9 9.6 77.9 </td <td></td>	
16.8 18.4 65.3 16.9 16.7 65.9 16.9 16.7 67.6 16.9 16.7 67.6 16.9 16.7 67.6 16.9 16.7 67.6 16.9 16.7 67.6 16.9 16.7 67.6 16.9 16.7 67.6 16.9 16.7 67.6 16.9 18.7 67.6 16.9 18.7 67.6 16.9 18.7 77.0 16.9 18.7 77.7 18.7 18.7 77.3 18.7 6.6 77.3 18.7 6.6 77.3 18.9 11.7 77.9 18.9 11.7 77.9 18.9 6.6 77.3 18.9 11.7 77.9 18.9 11.7 77.9 18.9 10.7 77.9 18.9 10.6 77.9 </td <td></td>	
16.0 16.2 65.0 12.0 16.6 67.6 11.0 16.6 60.2 10 16.6 60.2 10 16.6 60.2 10 16.6 60.2 10 16.6 70.5 10 14.7 60.7 10 14.7 70.9 10 14.7 70.9 10 14.7 70.9 10 14.7 70.9 13 14.7 75.7 13 11.4 75.7 13 11.6 75.7 13 11.6 75.7 13 11.2 75.9 13.3 11.2 75.9 13.3 11.2 74.6 77.6 75.9 13.4 11.2 75.9 13.4 11.2 75.9 13.6 11.2 76.7 13.6 11.2 76.9 12.5 3	
125 15.6 16.6 67.6 125 16.6 13.4 66.2 166 13.4 66.2 166 13.4 66.2 166 13.4 66.2 166 14.7 66.2 166 14.7 66.2 166 14.7 66.2 166 14.7 66.7 166 14.7 66.7 166 13.7 70.5 166 13.7 70.5 166 13.7 70.7 166 13.7 70.7 166 13.7 70.7 126 9.6 77.0 126 9.6 77.0 13.0 11.7 77.0 13.0 11.7 77.0 13.0 11.7 77.0 13.0 11.7 77.0 13.0 11.7 77.0 13.0 11.7 77.0 13.0 11.7	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
16.0 13.0 60.2 190 16.1 13.0 70.5 190 16.4 14.7 60.7 190 16.4 14.7 60.7 190 15.4 14.7 60.7 190 15.4 13.7 60.7 190 15.4 13.7 70.6 100 13.7 71.0 70.6 100 11.4 71.0 71.0 100 11.7 77.3 77.3 11.7 $9.77.8$ 77.8 70.6 11.7 $9.77.8$ 70.6 70.6 11.7 $9.77.8$ 70.6 70.6 11.8 $9.77.8$ 70.6 70.6 12.8 9.6 9.7 90.0 70.6 12.8 9.6 9.6 9.6 9.6 12.8 9.6 9.6 9.6 9.6 13.8 9.6 9.6 9.6 9.6 12.8 9.6	
161 13.4 70.5 164 14.0 68.6 37 15.6 14.7 68.7 36 15.4 13.7 70.9 38 15.4 13.7 70.9 38 13.6 13.7 70.9 38 13.6 11.4 70.9 38 13.6 12.5 77.0 38 13.6 9.5 77.3 39 13.1 9.6 77.3 39 13.1 9.6 77.3 39 13.3 11.8 70.9 39 13.3 9.6 77.3 39 13.3 9.6 77.3 39 13.3 9.6 77.9 39 13.3 9.6 77.9 39 13.3 9.6 77.9 39 13.3 9.6 77.9 39 13.6 9.6 77.9 39.0 13.5 9.6 77.9	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
166 15.4 18.7 71.5 166 15.4 18.7 70.0 164 16.6 11.4 74.0 163 13.6 12.5 77.0 162 13.6 9.5 77.0 162 13.7 9.6 77.0 161 13.7 9.6 77.0 170 13.7 9.6 77.0 170 13.7 9.6 77.0 170 13.7 9.6 77.0 170 13.3 11.2 77.0 170 13.3 11.2 77.0 170 13.3 11.2 77.0 170 13.0 9.6 77.0 170 13.0 9.6 77.0 171 13.0 9.6 77.0 171 13.0 9.6 77.0 171 13.6 9.6 77.0 171 13.6 9.6 77.0 172	
100 15.4 13.7 70.9 100 14.6 11.4 74.0 100 12.5 75.7 100 12.5 77.0 100 13.7 9.6 77.3 100 11.2 75.9 100 11.2 75.9 100 11.2 75.9 100 11.2 75.9 100 11.2 75.9 100 11.2 75.9 100 11.2 75.9 100 11.2 75.9 100 11.2 75.9 100 11.2 75.9 100 11.2 75.9 100 11.2 75.9 100 11.2 75.9 100 11.2 75.9 11.2 75.9 75.9 11.2 75.9 75.9 11.2 75.9 75.9 11.2 77.9 77.6 11.2	
33 13.0 12.5 75.7 32 13.5 9.5 77.0 33 13.7 9.0 77.3 30 13.7 9.0 77.3 30 13.7 9.6 77.3 79 13.3 11.7 77.3 77.3 77.3 77.3 77.6 77.3 77.3 77.7 77.3 77.3 77.7 77.3 77.3 77.7 77.3 77.3 77.7 77.3 77.3 77.7 77.3 77.3 77.7 77.3 77.3 77.7 77.3 77.3 77.7 77.6 77.6 77.7 77.6 77.6 77.7 77.6 77.6 77.7 77.6 77.6 77.7 77.6 78.5 77.7 78.5 78.5 77.6 78.5 78.5	
'82 13.5 9.5 77.0 '81 13.7 9.0 77.3 '80 13.1 9.6 77.3 '80 13.3 11.2 77.3 '79 13.3 11.2 77.3 '77 13.3 11.2 77.3 '77 13.3 11.2 77.3 '77 13.3 11.3 77.9 '77 13.3 11.3 77.9 '77 13.3 11.3 77.9 '77 13.3 11.3 77.9 '77 13.3 9.6 77.9 '77 13.3 9.6 77.9 '78 12.8 9.6 77.9 '79 12.8 9.6 77.6 '71 13.0 6.3 77.6 '71 13.0 6.3 78.5 '79 12.6 7.8 78.5 '79 12.6 7.8 78.5	
13.7 9.0 77.3 13.1 9.6 77.3 13.3 9.6 77.3 13.3 11.2 77.3 13.3 11.2 77.3 13.3 11.2 77.3 13.3 11.2 77.3 13.3 11.2 77.3 177 13.3 11.2 77.9 177 13.3 11.2 77.9 177 13.3 11.2 77.9 177 13.2 9.6 77.9 176 12.5 9.6 77.9 177 13.2 9.4 77.9 177 13.2 9.4 77.6 177 13.6 9.1 77.6 170 12.6 9.2 78.5 170 12.6 7.2 78.5	
33.1 9.6 77.3 79 33.3 11.2 75.9 77.3 74.6 77.6 77.7 13.3 11.3 77.6 77.6 12.5 0.6 77.6 77.6 77.6 77.6 77.6 77.6 78.5 77.6 78.5 78.5 79.6 78.5 78.5 79.6 78.5 78.5 79.6 78.5 78.5 79.6 78.5 78.5	
179 13.3 11.2 75.9 179 13.0 11.1 74.9 177 13.3 11.9 77.9 176 12.5 9.6 80.0 176 12.8 8.6 80.0 176 13.2 8.6 80.0 176 13.2 8.4 80.0 177 13.2 6.8 79.1 178 12.5 8.4 79.1 179 13.6 8.1 77.6 170 13.0 6.3 78.5 170 12.6 8.9 78.5 169 12.5 7.2 80.3	
13.0 11.1 74.9 177 13.3 11.8 77.9 176 12.5 9.6 80.0 175 12.6 8.6 80.0 174 13.2 6.8 80.0 175 13.6 8.6 80.0 174 13.2 6.8 80.0 175 13.6 8.4 80.0 176 13.6 8.4 80.0 175 13.6 8.4 80.0 176 13.6 8.4 8.6 171 13.0 6.3 8.9 172 13.6 8.9 78.5 170 12.6 8.9 78.5 170 12.6 7.2 8.9	
177 13.3 11.8 77.9 12.5 9.6 80.0 175 12.8 8.6 8.6 174 13.2 6.8 6.8 174 13.2 6.8 79.1 175 13.6 9.4 79.1 176 13.6 9.4 77.6 176 13.6 6.3 77.6 170 12.6 8.8 78.5 18.5 7.2 78.5	
12.5 9.6 80.0 12.8 8.6 80.0 13.2 6.8 80.0 13.2 6.8 80.0 13.3 8.4 80.0 13.6 9.1 80.0 13.6 9.1 80.0 13.6 9.1 80.7 13.0 6.3 80.7 13.0 6.3 78.5 13.0 7.2 80.3	
12.8 8.6 80.0 13.2 6.8 80.0 173 12.5 8.4 79.1 172 13.6 9.1 77.6 171 13.0 6.3 80.7 170 12.6 8.9 78.5 169 12.5 7.2 80.3	
'74 13.2 6.8 80.0 '73 12.5 8.4 79.1 '72 13.6 9.1 77.6 '71 13.0 6.3 80.7 '70 12.6 8.9 78.5 '69 12.5 7.2 80.3	
12.5 8.4 79.1 172 13.6 9.1 77.6 13.0 6.3 80.7 170 12.6 8.9 18.5 7.2 80.3	
'72 13.6 9.1 77.6 '71 13.0 6.3 80.7 '70 12.6 8.9 78.5 '69 12.5 7.2 80.3	
171 13.0 6.3 80.7 170 12.6 8.9 78.5 169 12.5 7.2 80.3	
'70 12.6 8.9 78.5 '69 12.5 7.2 80.3	
'69 12.5 7.2 80.3	
0% 10% 20% 30% 40% 50% 60% 70% 80% 80% 울대학교	1 00%

Hazardous Materials & Minerals Analyzed in Previous TDS

Total Diet Study conducted intermittently under KFDA/MFDS

Group	Analytes	Year of TDS
Heavy metals	 As, Cd, Pb As, Cd, Pb, Hg As, Cd, Pb, Hg, Al As, Cd, Pb, Sn, Hg, Me-Hg 	1994 2000 ~ 2004 2005 ~ 2009, 2012 2016
Minerals	 Cu, Na, K, Ca, Zn, Fe Mn, Cr, Cu, Fe, Ni, Zn Mg, Na, K, Ca, Zn, Fe Cu, Zn, Mn Cr 	1994, 2001 2000 2002, 2003 2004 2005~ 2009
Mycotoxin	 Aflatoxin B₁, M₁ Aflatoxin B₁, B₂, G₁, G₂, M₁, Ochratoxin A, Fumonisin, Patulin, Deoxynivalenol, Zearalenone 	2004 ~ 2006. 2012
Pesticides	 Alachlor, Amitraz, Dieldrin, Carbosulfan, etc. (196) Carbendazim & others (104) 	2002 2004
PCBs	 62 PCBs, dl-PCBs, indicator PCBs indicator PCBs (7) 	2013, 2017
Processing/cooking contaminants	• Acyrlamide, PAHs, HCAs, Nitrosamines, Biogenic amines, Trans-fat, Aldehydes, Furan, Etylcarbamate, THMs, 1,3-DCP, 3-MCPD, Benzene, Etylene- oxide, etc.	2013 ~ 2016 2018 ~ 2021 2022 ~

National Health Promotion Act of 1995

Article 16 (National Nutrition Survey, etc.) (1) The Minister of Health and Welfare shall regularly conduct a national nutrition survey, such as the survey of health status of the citizens, intake of food and diet (hereinafter referred to as "national nutrition survey").

(2) A Special Metropolitan City, a Metropolitan City and a Do shall have public officials whose duties are to perform national nutrition surveys and nutrition guidance.

(3) The public officials who conduct national nutrition surveys shall produce identification indicating his/her authority to the persons concerned.

(4) The content of and method for the citizens' nutrition surveys and other matters necessary for the citizens' nutrition surveys and nutrition guidance shall be prescribed by Presidential Decree. Triennial survey

Health exam on individuals Dietary intake of individuals

CHAPTER ${\rm I\!I\!I}$ NATIONAL HEALTH PROMOTION FUND

Article 22 (Establishment of Fund)

The Minister of Health and Welfare shall establish the National Health Promotion Fund (hereinafter referred to as the "Fund") in order to assure a source of revenue necessary for the smooth promotion of the National Health Promotion Projects. **Article 23 (Appropriation of Fund)** (1) The Fund shall be appropriated from the following sources of revenue:

1. Amount determined by the Ordinance of the Ministry of Health and Welfare from the sum of the money contributed to the public utilities works by the tobacco business operator and import-distributors referred to in Article 25-2 of the Tobacco Business Act;

2. Shared Money prescribed by the Presidential Decree within ten hundredths of the working expenses (including expenditures required as costs of Medical examinations) for preventive medical treatment of the insured referred to in the Medical Insurance Act and the Act on the medical Insurance for Public Officials and Private School Teachers and Staff; and 3. Other profits from the operation of the Fund

3. Other profits from the operation of the Fund.

(2) Computation basis and sharing method of the shared money referred to in paragraph (1) 2 shall be prescribed by the Residential Decree.

National Food Intake Data Available as of 2022

- **1.** Korea National Health and Nutrition Examination Survey (KNHANES)
- 1998 & 2001: November & December (KNHANES I & II)
- 2005: April & May (KNHANES III)
- 2007 (July-December), 2008, 2009 (KNHANES IV)
- 2010, 2011, 2012 (KNHANES V)
- 2013, 2014, 2015 (KNHANES VI)
- 2016, 2017, 2018 (KNHANES VII)
- 2019, 2020 (KNHANES VIII)

2. KNHANES Seasonal Nutrition Survey

- 1999 & 2002: Spring, Summer, Fall
- 2005: Summer, Fall, Winter

3. Special Dietary Intake Survey for Children

- 2007 Winter, 2008 Summer & Fall, 2009 Spring

4. Special Dietary Intake Survey for Infants, Pregnant & Lactating Women

- 2011 Winter, 2012 Summer & Fall, 2013 Spring

History of Total Diet Study (TDS) in Korea

2011 Master Plan: Mid-term Roadmap for Korean TDS

Introduction of mapping for closer-to-real estimate

Nutrition Research and Practice (Nutr Res Pract) 2012;6(5):436-443 http://dx.doi.org/10.4162/nrp.2012.6.5.436 pISSN 1976-1457 eISSN 2005-6168

Measures for a closer-to-real estimate of dietary exposure to total mercury and lead in total diet study for Koreans

Eunmi Koh¹, Hyehyung Shin¹, Miyong Yon¹, Ji Woon Nam¹, Yoonna Lee¹, Dohee Kim¹, Jeeyeon Lee¹, Meehye Kim², Sung-Kug Park², Hoon Choi² and Cho-il Kim^{1§}

¹Department of Health Industry & Policy, Korea Health Industry Development Institute, 187 Osongsaengmyeong 2(i)-ro, Osong-eup, Chungbuk 363-700, Korea

²Food Contaminants Division, Food Safety Evaluation Department, National Institute of Food & Drug Safety Evaluation, Chungbuk 363-700, Korea

Abstract

Previous Korean total diet studies (KTDSs) have estimated dietary exposure to toxic chemicals based on 110-120 representative foods selected from over 500 foods appeared in the Korea National Health & Nutrition Examination Surveys (KNHANES), which would result in a possible underestimation. In order to find measures for a closer-to-real estimate of dietary exposure to heavy metals, this study examined the feasibility of mapping foods to the representative foods in the KTDS by comparing estimates. In mapping, those foods not analyzed in the 2009 KTDS (443 out of 559 foods appeared in the 2007 KNHANES) were mapped to the 114 representative foods used in the 2009 KTDS based on the closeness in regards to biological systematics and morphological similarity. Dietary exposures to total mercury and lead were re-estimated using the content of total mercury and lead in 114 foods analyzed in the 2009 KTDS, food intake, and individual's own body weight for respondents in the 2007 KNHANES instead of mean body weight of Koreans used in the 2009 KTDS. The re-estimates of exposure with mapping were approximately 50% higher than the original estimates reported in the 2009 KTDS. In addition, mapping enabled the comparison of percentile distribution of the exposure among populations of different age groups. In conclusion, estimates via mapping resulted in a more comprehensive estimation of dietary exposure to heavy metals present in foods that Koreans consume.

Key Words: Dietary exposure, total mercury, lead, mapping, Korean total diet study (KTDS)

Total Diet Study as a R&D Project (2013-2016),

Securing Legal Basis, and Guides Development

Flow and time allowed in 2013-2016 TDS (3 rounds in 3 years)

TDS Planning (3+1+1 mo.)

- Priority chemicals
- Available Data
 - Food intake data, Market share
- TDS food list & cooking method
- Protocol

Implementation (7+8+6 mo.)

- Food Purchase
- Food Preparation
- Analysis of Substances
 - Batching

Report and Announcement (1+ +3 mo.)

- Peer review
- Report publication
 - Annual report, scientific papers
- Media release
- Education

Exposure Assessment (1+1+2mo.)

- Data validation
- Mapping of foods
- Comparison with Health Based Guidance Values

Legal Basis: Food Sanitation Act (FSA) Amended

Article 7-4 (Management Plans, etc. of Standards and Specifications of Foods, etc.)

(1) The Minister of Food and Drug Safety may formulate and promote a master plan for management of standards and specifications of foods, etc. (hereinafter referred to as "management plan") every 5 years, subject to consultations with the heads of related central administrative agencies and deliberation by the Food Sanitation Deliberative Committee under Article 57.

(2) A management plan shall include the following:

1. Basic objectives and directions for implementation of the management of standards and specifications of foods, etc.;

2. Evaluation of the amount of exposure of foods, etc. to harmful substances;

3. A plan for appropriate management of the total amount of exposure of foods, etc. to harmful substances;

4. Matters concerning reevaluation of standards and specifications of foods, etc.;

5. Other necessary matters concerning the management of standards and specifications of foods, etc.

(3) In order to implement a management plan, the Minister of Food and Drug Safety shall formulate an action plan for management of standards and specifications of foods, etc. (hereinafter referred to as "action plan") every year in consultation with the heads of related central administrative agencies.

(4) When necessary to formulate and implement a management plan and an action plan, the Minister of Food and Drug Safety may request the heads of related central administrative agencies and local governments to provide cooperation. In such cases, the heads of related central administrative agencies, etc. that are requested to provide cooperation shall comply therewith unless extenuating circumstances exist.

(5) The types of harmful substances subject to the evaluation and management of the amount of exposure included in a management plan, and matters necessary for the formulation, implementation, etc. of a management plan and an action plan shall be prescribed by Ordinance of the Prime Minister.

[This Article Newly Inserted by Act No. 12719, May 28, 2014 and effective from November 29, 2014]

Article 7-5 (Reevaluation, etc. of Standards and Specifications of Foods, etc.)

(1) The Minister of Food and Drug Safety shall reevaluate standards and specifications pertaining to foods, etc. in accordance with a management plan in a periodic manner.

(2) Necessary matters concerning objects, methods of and procedures for reevaluation under paragraph (1) shall be prescribed by Ordinance of the Prime Minister.

[This Article Newly Inserted by Act No. 12719, May 28, 2014 and effective from November 29, 2014]

Legal Basis: Amended FSA - Ordinance of PM

Article 5-4 (Establishment and Implementation of Standards and Specifications for Basic Management of Food, etc.) [This Article Newly Inserted, August 18, 2015]

- (1) The types of hazardous substances to be the targets in the evaluation and management of the exposure included in the basic plan (hereinafter referred to as "management plan") for management of standard and specifications of foods, etc. are as follows
 - 1. Heavy metals
 - 2. Mycotoxins
 - 3. Organic pollutants
 - 4. Pollutants produced during manufacturing and processing
 - 5. In addition, hazardous substances that the Minister of Food and Drug Safety deems necessary to
 - evaluate and manage exposure for the safety management of food. etc..
 - 2) When establishing and implementing the management plan and the implementation plan of standards and specifications of foods, etc. pursuant to Article 7-4 (3) of the Act, the following data shall be used as a basis.
 - 1. Data on degree of contamination of harmful substances in food, etc.
 - 2. Data on the reduction (reduction) of harmful substances in food, etc.
 - 3. Data from Total Diet Study (TDS)

4. Data from Nutrition & Dietary Survey according to Article 7 (2) 2 C of the \lceil National Nutrition Management Act \Rightarrow KNHANES data

Preparation of Food Samples in Korean TDS

Guide Manual for Sample Preparation in Korean Total Diet Study

한국형 총식이조사 표준지침서

Guidebook for Korean Total Diet Studies

- O Guide for Korean Total Diet Studies
 - A step-by-step guide was developed to promote TDSs in consistent and comparable manner
 - A total of 18 basic phases was suggested from planning through risk communication in Total Diet Studies
 - Wherever possible, detailed examples were provided to enhance understanding and promote proper conducting of TDSs by food safety control related professionals with some experience
- O Guide for Food Intake Survey of Koreans
 - To accommodate the information needs in TDSs, a step-by-step guide was developed for food intake survey on the population of interest
 - Procedures from the planning through data management were described in 10 chapters based on the survey design of the Korea National Health and Nutrition Examination Survey
- O Guide for Chemical Analysis and Quality Control involved in Total Diet Studies
 - Guide for chemical analysis of hazardous materials and nutrients
 - Guide for quality control (QC) and quality assurance (QA) of chemical analysis in the designated laboratories and relevant data
- O Suggestions for Simultaneous Assessment on Food-driven Risk & Benefit
 - Some examples from foreign countries
 - Comparison and analytic discussion on food-driven exposures to hazardous materials and some nutrients based on the domestic data

Published in 2017

Learning from Peers for Korean Total Diet Study

Issue: How to handle data w/NDs

- Statistical approach needed to handle data with considerable portion of 'Not Detected' values in estimating exposure to hazardous materials
- Deterministic exposure estimation has been mostly used with simple mean and 0 for NDs (lower bound) in Korea
- In the R&D project TDS, only 1 composite sample per food was used for analysis along with individual intake data of population to mimic probabilistic estimation
- WHO recommends to secure 30-50 analysis samples per food for HM analysis with low detection rates for statistical treatment of NDs
- US FDA is piloting with 24 samples per food from 2017

Duty Travels to US FDA CFSAN till 2016 & 2019

Duty Travel to BfR in 2017

The 1st Korean Total Diet Study (2018-2022)

***** Acknowledgement: The 1st Korean Total Diet Study has been funded by the Ministry of Food & Drug Safety (MFDS).

Korean Total Diet Study: Objectives

- Estimation of dietary exposure for heavy metals and mycotoxins which are the priority components for Standards & Specification for Food Safety in Korea through TDS
- Estimation of dietary intake for some nutrients of concern in total population and/or certain age groups, such as vitamin D, calcium, and iron
 - The Guide Manual for Korean Total Diet Study published in 2017 by MFDS needs to be used throughout the study along with the Guide Manuals for Chemical Analysis, QA & QC, and Sample Preparation in Korean Total Diet Study
 - Stabilized planning and execution of TDS based on the representative & credible data

Flow of the Korean Total Diet Study (2018-2022)

Representative Food Selection for Korean TDS: Year 1

- Merged intake data from 2013 through 2016 KNHANES
- ► Food list at tertiary (3°) food code level
 - In line w/ principles for Standards & Specifications: 555 items
- Deleted NA foods for S&S (ex. broth): 547 items
- Intake of dried foods in KNHANES -> Conversion to raw state amount (based on the factors given in KNHANES data)
- \because S&S set based on raw state of foods
- List to cover at least 90% of total food intake: 100 items
 - Based on population mean intake of each food item at 3° code level
- Addition of food items consumed in low amount but w/ higher frequency

Representative Food Selection for Korean TDS: Year 1

- More addition for mapping feasibility: systematic similarity
 - Items w/ frequency \geq 5.0% among those belong to the cumulative intake proportion of 90~95%: 15 items including mushrooms
- Addition of items known for high content of heavy metals: 6 items
 Octopus, crab, beef byproducts, mussels, oysters, scallops
- Addition of items of concern for mycotoxins: 2 items
 - Breakfast cereals, dried & ground red pepper (2° . Food code level)

129 items at 3° code level and 1 item at 2° code level Total of **130 items covering 92.8**% of total food intake

Ingredient food intake estimated from recipe data

Raw data from Nutrition Survey of KNHANES

개인아이디	16개시도 찍	구분 먹	· 전문 조사구변:	호 사분위수(개인) 사분위수(가구) 성별 DH DI M 사용정 개봉은 개봉은 구드			유신 신품면 유신귀드 조건	<u>미용선보파</u> 조립음식 설형음식 설형음식 신종규드 신종명(하금) 신	
A117103403	1	1	1 A117	3	Subject ID	Name of dish	Dish code	Food code	Name of food	Intake 52
1101135701	9	1	1 1101	2	A101100102	쌀밥	10136	01173	쌀,멥쌀,논벼,백미,국내산,일반형	234.97
1101135701	9	1	1 1101	2	A101100102	 쌀반	10136	01173	쌀 멥쌀 논벼 백미 국내산 일반형	234.97
1101135702	9	1	1 1101	2	A101100102	ネオエルロ	50253	01099	및 및가공식품 빨/까지를 초코파	68.00 **
1101135704	9	1	1 1101	2	A101100102	Squash & Tofu Stew	70520	04017	tofu	26.56
N101189901	14	2	1 N101	1	A101100102	Squash & Tofu Stew	70520	06034	dreen peppers	1 74
N101189901 A117103403	14	2	1 N101	3	A101100102	Squash & Tofu Stew	70520	06121	green peppers	0.74
A117103403 1101135701	9	1	1 A117 1 1101	3	A101100102	Squash & Toru Stew	70520	00121	ganic	0,14
1101135702 1101135702	9 9	1	1 1101	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A101100102	Squash & Toru Stew	70520	00000	green onions	5,94
N101189901 N101189901	14	2	1 N101 1 N101	1	AIUIIUUIUZ	Squash & Tofu Stew	70520	06407	young squash	8,72
0104144406	15	2	2 0104	2	A101100102	Squash & Tofu Stew	70520	11164	Anchovy	1, 74
0104144407	15	2	2 0104	2	A101100102	Squash & Tofu Stew	70520	16018	Soybean paste	8,72
O104144407 A110109702	15	2	2 0104 2 A110	2	A101100102	삼겹살	70840	09065	돼지고기,고기,삼컵실,생것	129, 34
A113147001	1	1	I A113	3	A101100102	삼겹살	70840	16038	소금,식염	2,29 20
A115101502	1	1	1 A115	3	A101100102	계란후라이	10915	10005	달걀,전란,생것	50,00
A116160802	1	1	1 A116		A101100102	계란후라이	10915	10005	달걀,전란,생것	50,00
					A101100102	계란후라이	10915	14017	옥수수기름	2,00
					A101100102	계란후라이	10915	14017	옥수수기름	2,00
			1		A101100102	계란후라이	10915	16038	소금,식염	0,75
			-		A101100102	계란후라이	10915	16038	소금,식염	0,75
					A101100102	잔멸치볶음	11060	03024	설탕,백설탕	0,84
					A101100102	잔멸치볶음	11060	03024	설탕,백설탕	0,84
					A101100102	잔멸치볶음	11060	05061	참깨,흰깨,볶은것	0,13
					A101100102	잔멸치볶음	11060	05061	참깨,흰깨,볶은것	0,13
					A101100102	잔멸치볶음	11060	06121	마늘,구근,국내산,생것	0,32
					A101100102	잔멸치볶음	11060	06121	마늘,구근,국내산,생것	0,32
					A101100102	잔멸치볶음	11060	11166	멸치,잔멸치,자건품	3,02
					A101100102	잔멸치볶음	11060	11166	멸치,잔멸치,자건품	3,02
- Ma					A101100102	잔멸치볶음	11060	14017	옥수수기름	0.51
서 SEOU					A101100102	자며귀보으	11060	1/017	요스스기르	식품의약품안전7

Basic preparation (cooking) methods for RFs

	Preparation	Example					
1	roasted/grilled	beef					
2	as is/raw	strawberry		Preparation		Example	
3	pan fried	wheat flour	18	stir fr	ied and pan fried	mushroom (omelet)	
4	pan fried and boiled	tofu	19	stir fr	ied and simmered	beef (spaghetti sauce)	
5	blanched/parboiled	spinach	20	soak	ed in water	dried seaweed	
6	blanched and pan fried	bean sprouts (mung bea	21	soak	ed in water and boiled	dried seaweed (soup)	
7	blanched and steamed	cabbage (wonton)	22	soak	ed in water and stir fried	dried fern/bracken	
8	blanched and boiled	bean sprouts (wonton in	23	boiled and strained (use solid mass)		pork	
9	blanched and stir fried	perilla leaves	24	boiled, strained and baked		spaghetti (oven)	
10	boiled	kimchi (stew)	25	boiled, strained and boiled		noodles (stew)	
11	boiled water added	powdered infant formula	26	boiled, strained and stir fried		spaghetti	
12	boiled and taken out (use liquid)	dried anchovy	27	boile	d, strained and pan fried	pork (mungbean pancake)	
13	Steamed (rice)	white rice	28	boile	d, strained and steamed	starch noodle (wonton)	
14	Steamed (rice) and boiled	rice (rice in soup)	29	boile	d, strained and fried	starch noodle (wonton)	
15	Steamed (rice) and stir fried	fried rice	30	stear	ned	com	
16	Steamed (rice) and pan fried	rice (scorched rice)	31	steamed and fried		wonton (fried wonton)	
17	stir fried	Vegetables	32	stear	ned or baked	sweet potato	
		-	33	fried		potato (French fries)	

Representative preparation methods for Korean TDS

- Addition of 6 cooking methods used for foods w/ relatively high intake,
- 'Food X Cooking method' pairs with 5 % or higher in ingredient amount and (∩) 10%
 or higher in frequency of use
- 'Food X Cooking method' pairs with 10% or higher in ingredient amount and (\cap) 5% or higher in frequency of use: ex. tofu

Food Code	Name of Food	Mean Intake (g)	Cooking method used	5% ∩ 10%	10% ∩ 5%
09070	Pork	41.7	Frying		\bigcirc
10005	Eggs	29.7	Boiling		\bigcirc
06029	Pepper	27.5	Stir-frying		\bigcirc
02001	Potatoes	21.3	Frying		\bigcirc
09135	Beef	21.8	Stir-frying		\bigcirc
04017	Tofu	20.2	Pan-frying	0	

Representative preparation methods for Korean TDS

- Limit number of preparation methods for food w/ lower intake amount
 - When 3 or more prep. methods were selected for foods w/ intake < 1.5g, allow only 2 methods based on ingredient amount and frequency of use
- Integration of some preparation methods into one or deletion
- Integration of 'stir fried & simmered' and 'boiled' into 'boiled'
- Deletion of 'pan-frying' if both 'stir-frying' and 'pan-frying' were selected
- Selected preparation methods
- For 130 items, 224 pairs of 'Food X Cooking Method' were selected

Sampling Sites for Representative Foods

3 Regions and 3 metropolitan cities/region

- Seoul & Kyeongki region, Cheolla & Choongchung region, and

Kangwon & Kyeongsang region

- To secure 6 composites/year (30 samples in 5 years) for each food item, 2 different combinations of cities were used:
- Seasonality of the raw commodity foods considered (ex. spring to summer and summer to fall samples from 3 regions)
- Processed foods w/o seasonality: Combination of cities based on population size for 6 composites

Composite of RFs by Sampling Sites and Seasonality

sad.						W/O	
VV/	Administrative District	2016				seasonality	
seasonality	Auministrative District	Total population	Male	Female			
	Nationwide	51,269,554	25,696,987	25,572,567		Seoul,	
	SEOUL	9,805,506	4,799,115	5,006,391		Incheon,	
	Pusan	3,440,484	1,694,026	1,746,458		Suwon	
$\searrow \rightarrow$	Daegu	2,461,002	1,223,733	1,237,269	ר		
	Incheon	2,913,024	1,465,699	1,447,325		Pusan,	
	Kwangju	1,501,557	747,303	754,254		Daegu + Ulsan	,
	Daejeon	1,535,445	770,971	764,474		Ŭ	
	Ulsan	1,166,033	605,618	560,415		Kwangiu +	
	Sejong	242,507	122,648	119,859		Daeieon +	
\rightarrow	Kyeongji-do	12,671,956	6,405,301	6,266,655		Cheongliu	
	Kangwon-do	1,521,751	769,461	752,290		Cheong-ju	
$ \longrightarrow $	Choongchungbuk-do	1,603,404	814,049	789,355			
	Choongchungnam-do	2,132,566	1,091,091	1,041,475			
	Cheollabuk-do	1,833,168	915,493	917,675			
	Cheollanam-do	1,796,017	901,500	894,517			
	Kyeongsangbuk-do	2,682,169	1,354,997	1,327,172			
	Kyeongsangnam-do	3,339,633	1,701,849	1,637,784			
사울대학교 SEDUL NATIONAL UNIVERSITY	Cheju-do	623,332	314,133	309,199		이 식품의약품인	<u> </u>

Seasonality of raw commodity type foods

Raw commodity type food samples

- Foods with 1 major season or processed foods: One collection/year
- Foods available at market throughout the year but with variable amount: Two collections/year ex) fresh Garlic vs stored garlic

					20	17					20	10
Foods at market		2017								20	18	
r oous at market	3 🔽	4 👻	5 🖵	6 🚽	7 🚽	8 🔽	9 🚽	10 🖵	11 💌	12 🔽	1 🔽	2 🔽
Melon	2,126	4,134	7,525	9,011	5,448	1,580	780	162	1	6	26	432
Banana	5,506	5,628	6,822	6,123	5,555	4,657	5,483	4,973	5,126	<mark>4,47</mark> 3	4,839	4,009
Carrot	4,463	3,725	4,414	3,932	3,738	3,981	<mark>4,293</mark>	3,686	3,655	3,626	3,569	3,682
Lettuce	2,973	2,770	3,044	2,527	1,704	1,506	2,281	2,299	2,123	2,071	1,873	1,684
Crab	79	52	68	73	51	45	37	74	67	34	63	65
Radish	16,143	13,950	14,393	12,277	11,776	13,770	19,191	13,510	10,235	10,225	12,011	12,656
Tomato	5,296	7,533	9,001	8,457	6,431	3,895	4,049	4,545	3,475	3,839	3,687	3,854
Cucumber	9,418	13,026	18,753	17,325	8,303	6,760	7,427	5,702	4,952	4,946	4,591	5,060
Spinach	3,478	2,300	2,125	1,784	915	436	1,601	2,173	2,660	3,430	3,645	3,528
Garlic	3,142	3,358	5,954	4,657	2,533	2,437	2,870	2,286	3,565	603	2,733	2,639
Apples	3,030	3,005	2,920	2,225	1,075	3,317	0,372	3,440	4,151	5,527	4,292	4,033
Peppers	4,205	4,210	5,260	5,167	4,521	4,740	4,357	3,953	3,755	3,611	3,013	2,821
Onions	17,432	22,670	25,070	20,964	16,296	18,727	19,755	15,304	17,539	17,450	15,358	15,620
Mandarin oranges	2,009	513	243	310	367	385	782	6,217	11,346	14,382	12,221	8,161
potatoes	7,208	7,896	9,381	13,444	6,808	6,073	5,732	4,620	5,517	5,204	5,369	4,504
Persimmon	1	-	-	-	-	-	702	5,666	6,661	2,338	971	71
										· · · · · · · · · · · · · · · · · · ·		

Mar. 2017 ~ Feb. 2018: circulation amount in tons

울대 학교 L NATIONAL UNIVERSITY ▲ 식품의약품안전처

Seasonality of raw commodity type foods

Raw commodity type food samples

- Foods with 1 major season or processed foods: One collection/year
- Foods available at market throughout the year but with variable amount: Two
 - collections/year ex) female vs male crabs

Feb. ~ Dec. 2021: circulation amount in tons

Foodo at moreleat						2021					
Foods at market	2	3	4	5	6	7	8	9	10	11	12
Eggplant	798	1,129	1,737	2,004	2,332	2,852	2,370	2,347	1,621	1,140	877
Scallop	15	17	11	10	7	6	4	7	19	32	33
Mandarin oranges	8,055	3,385	856	298	372	412	510	1,088	5,922	8,667	11,621
Potato	4,946	6,966	8,501	11,166	11,296	5,203	5,114	4,818	5,478	5,125	5,810
Red pepper powder	119	127	152	115	128	133	129	151	169	174	186
Crab (female)	48	59	58	51	54	21	18	38	23	35	34
Sweet polato	3,937	4,817	3,689	2,994	2,786	2,844	4,084	4,465	4,474	3,672	5,003
Bracken fern	439	318	322	306	312	290	297	423	323	333	287
Mackerel	460	635	610	593	1,007	676	729	689	730	789	754
Oysters	278	97	28	12	8	5	7	22	115	539	544
Perilla leaves	040	1 200	1 165	4 204	1 202	4 354	1 1 60	1.025	1.090	002	012
Crab (male)	36	37	39	59	49	33	58	146	206	172	90
	254	257	437	708	679	612	556	651	641	457	419
Small octopus	73	91	117	118	124	108	77	121	120	115	115
Carrot	4,164	4,486	4,075	4,164	4,277	3,583	4,193	4,415	3,883	3,890	4,164
Pollack	616	206	205	562	343	118	135	1,005	313	507	430
Strawberry	4,623	6,000	4,050	1,331	81	2	2	4	55	1,195	2,566
Littleneck clam	234	313	319	325	294	233	226	247	293	282	281
Garlic	2,237	3,246	3,516	4,098	4,165	2,701	3,143	3,544	2,231	3,022	2,418
Radish	13,840	15,439	13,467	13,249	12,350	11,277	13,275	17,283	14,689	10,118	10,651
Water dropwort	912	1,720	1,807	1,284	1,164	983	728	795	808	1,094	839

Weighing utensils

Preparation/cooking

끓이기(Boiling)

•방법 식품을 끓는 물과 함께 넣어 장시간 익히기 •예시 국,탕,조림 등

삶기 (Boiling & draining)

•방법 끓는 물에 식품을 장시간 익힌 후 건지기 •예시 국수, 밤, 달걀 등

Preparation/cooking

볶기(Stir-frying)

•방법 170℃로 예열된 팬에서 휘저어가며 익히기 •예시 나물 볶음, 볶음밥 등

부치기(Pan-frying)

•방법 170℃로 예열된 팬에서 뒤집으며 익히기 •예시 전, 생선구이, 호떡 등

굽기(Grilling/roasting/baking/broiling)

•방법 180℃로 예열된 석쇠 또는 오븐에서 익히기(기름 사용 안 함) •예시 숯불구이, 오븐구이, 빵 등

Wheat flour: pan-frying

Mackerel: grilling

Pooling into composite

서울대학교

Mackerel-boiling

Pooling into composite

Homogenization

서울대학교

Making aliquots of the prepared samples for analysis

Make aliquots of necessary amount for each analysis

Aliquotting

Stored sample aliquots as of July 2022

TDS Year	No. of cooked samples	No. of aliquots stored		
2018	1,344	1,344		
2019	1,362	1,362		
2020	1,392	5,568		
2020 Winter	111	444		
2021	1,416	5,664		

Analysis of Heavy Metals, Mycotoxins, and Nutrients

Analytes

- Heavy metals:
- Lead (Pb), cadmium (Cd), arsenic (As), inorganic arsenic (I-As), aluminum (Al), mercury (Hg), methyl mercury (MeHg)
- Mycotoxins:
- Aflatoxin $B_1/B_2/G_1/G_2$, Ochratoxin A, Fumonisine B_1/B_2 , Zeralenone
- Nutrients:
- Calcium, iron, zinc, vitamin D (D_2 , D_3), Iodine, sodium, potassium, magnesium, etc.

Analysis of Heavy Metals, Mycotoxins, and Nutrients: Representative Matrices

Preparation of representative food matrices for cooked food sample analysis

Rice porridge (low fat solid)	Tomato juice (low fat liquid)	Beef loin (high fat solid)	Cod (high hat solid)	Sunflower seed oil (high fat liquid)
Grains & cereals, tubers, beans, nuts, mushrooms, cookies, breads, noodles, rice cake, etc.	Beverages & drinks, fruits, liquid seasonings, kimchi, etc. with relatively high water content	Meats and their products, processed foods, etc. with relatively high fat content	Fishes, shellfishes, crustacea, etc. with relatively high fat content	Fats & oils, dairy products, etc. with relatively high fat content

Analysis of Heavy Metals, Mycotoxins, and Nutrients: Revision on Representative Matrices

Guidelines for the Validation of Chemical Methods for the FDA FVM Program, 2015

Analysis of Heavy Metals, Mycotoxins, and Nutrients: Revised Representative Matrices

- Preparation methods given by matrix characteristics
 - 1st: Fat content, liquid, solid
 - 2nd : Applicability of preparation method (Confirmed with IS)

				MIIK	
Rice porridge (low fat solid)	Tomato juice (low fat liquid)	Peanut butter	Olive oil	Milk	Red pepper powder
Grains & cereals,	Beverages &	Cookies, Meats &	Fats & oils,	Milk, ice	(Spice & herbs)
tubers, beans,	drinks, fruits, liquid	their products,	some dairy	cream, vogurt,	Red pepper
nuts, vegetables	seasonings,	Mackerel,	products, etc.	liquid vogurt.	powder, black
w/ water	vegetables w/	processed foods,	with high fat	etc.	pepper, coffee
content≤80%,	water content >	etc. with relatively	content		powder,
oysters, small	80%, etc.	high fat content			fermented red
octopus, etc.					pepper paste
					스 식품의약품안전;

Results: Method Validation

Calibration

Matrix		AFB1	AFB2	AFG1	AFG2	ΟΤΑ	FMB1	FMB2	ZEN	DON	AFM1
	Slope	1.0500	2.1400	1.0600	2.2100	2.0300	1.1000	1.0400	1.1300	1.1032	
Rice porridge	R ²	0.9982	0.9982	0.9962	0.9984	0.9946	0.9982	0.9978	0.9956	0.9893	-
	Range	0.03-0.9	0.05-0.9	0.07-1.5	0.06-1.5	0.2-3	1.2-75	2.8-75	0.7-60	10.0-200	
	Slope	1.057	1.947	1.179	1.450	1.855	0.964	0.873	1.084	0.975	
Tomato juice	R ²	0.9970	0.9986	0.9964	0.9964	0.9980	0.9928	0.9942	0.9978	0.9964	-
	Range	0.03-1.8	0.06-1.8	0.09-1.8	0.06-1.8	0.05-1.8	0.2-9	0.3-9	0.6-45	5.9-150	
	Slope	0.748	1.879	0.948	1.229	2.072	0.978	0.709	0.878	1.077	
Peanut butter	R ²	0.9989	0.9959	0.9965	0.9988	0.9954	0.9987	0.9966	0.9964	0.9957	-
	Range	0.05-2.1	0.05-2.1	0.10-2.1	0.50-9	0.50-30	3.0-45	3.0-45	1.0-60	10-200	
Dedamara	Slope	1.001	1.502	0.887	1.141	2.510	0.985	0.568	0.902	1.137	
Red pepper	R ²	0.9979	0.9973	0.9979	0.9981	0.9984	0.9979	0.9973	0.9992	0.9998	-
powder	Range	0.02-0.3	0.03-0.3	0.02-0.3	0.09-0.9	0.15-3	0.5-12	0.7-6	0.26-8	3.42-100	
	Slope	0.734	2.177	1.600	2.114	0.968	0.965	0.727	0.836	1.381	
Olive oil	R ²	0.9988	0.9988	0.9990	0.9975	0.9991	0.9986	0.9959	0.9989	0.9960	-
	Range	0.06-0.9	0.08-0.9	0.18-2.4	0.19-2.4	0.03-1.5	0.6-18	0.6-18	0.24-6	1.2-30	
	Slope	0.971	1.810	0.670	2.490	2.880	0.879	0.616	0.839	1.150	3.012
Milk	R ²	0.9992	0.9968	0.9986	0.9972	0.9996	0.9980	0.9950	0.9994	0.9924	0.9980
	Range	0.009-0.3	0.006-0.3	0.013-0.3	0.009-0.3	0.03-1.5	0.6-15	0.2-15	0.1-15	0.1-25	0.018-0.3

Red: interference

Results: Method Validation

• Limit of Detection (LOD)

Unit: µg/kg

Matriy Vear											
IVIALITA	Icai	AFB1	AFB2	AFG1	AFG2	ΟΤΑ	FMB1	FMB2	ZEN	DON	AFM1
	2022	0.01	0.02	0.02	0.02	0.1	0.4	0.9	0.3	3.3	
Rice porriage	2021	0.01	0.02	0.02	0.02	0.1	0.4	0.9	0.3	3.3	
Description	2022	0.02	0.02	0.03	0.2	0.2	1.0	1.0	0.3	3.3	
Peanut butter	2021	0.01	0.02	0.03	0.2	0.2	1.0	1.0	0.3	3.6	
Tomoto inico	2022	0.01	0.02	0.03	0.02	0.02	0.1	0.1	0.2	1.9	-
Iomato juice	2021	0.01	0.02	0.03	0.02	0.02	0.1	0.1	0.2	1.9	-
Red pepper	2022	0.008	0.009	0.005	0.03	0.05	0.18	0.23	0.09	1.13	-
powder	2021	0.008	0.009	0.01	0.02	0.07	0.4	0.2	0.13	1.29	
	2022	0.02	0.03	0.06	0.06	0.01	0.2	0.2	0.08	0.4	-
	2021	0.02	0.03	0.06	0.06	0.01	0.5	0.4	0.08	0.4	-
NA:IL	2022	0.003	0.002	0.004	0.003	0.01	0.2	0.1	0.04	0.2	0.003
IVIIIK	2021	0.003	0.002	0.004	0.003	0.01	0.2	0.1	0.04	0.2	0.003

QA and **QC**

► QC Sample Analysis

Red pepper powder

Fera Science Ltd (Fera) Sand Hutton, York, YO41 1LZ Tel: +44 (0)1904 462100 Fax: +44(0)1904 500440 info@fapas.com www.fapas.com

FAPAS QC MATERIAL DATA SHEET	T04286QC
Matrix	Chilli Powder
Weight / Volume of Contents	55g

Analyte	Assigned Value, Xa	Range for z ≤2	Units	No. of data points producing Xa
Aflatoxin B1	4.70	2.63 - 6.77	µg/kg	31
Aflatoxin B2	2.41	1.35 - 3.47	µg/kg	31
Aflatoxin G1	2.31	1.29 - 3.32	µg/kg	31
Aflatoxin G2	0.843	0.472 - 1.214	µg/kg	29
Aflatoxins (total)	10.3	5.8 - 14.9	µg/kg	29

Coffee

Fera Science Ltd (Fera) Sand Hutton, York, YO41 1LZ Tel: +44 (0)1904 462100 Fax: +44(0)1904 500440 info@fapas.com www.fapas.com

FAPAS QC MATERIAL DATA SHEET	T17169QC
Matrix	Roasted Coffee
Weight / Volume of Contents	55g

Analyte	Assigned Value, Xa	Range for z ≤2	Units	No. of data points producing Xa
Ochratoxin A	5.01	2.81 - 7.21	µg/kg	42

QA and **QC**

FAPAS Proficiency Testing

2021 FAPAS Test result						
Analyte	This study (ug/kg)	Assigned value (ug/kg)	Z-score			
Aflatoxin B1	2.76	3.12	-0.5			
Deoxynivalenol (DON)	775	959	-1.2			
Zearalenone (ZEN)	104	122	-0.7			
Ochratoxin A	3.76	3.79	0.0			
FB1	358	330	0.5			
FB2	442	414	0.4			
Total Fumonisins (sum FB1 & FB2)8007200.7						
10 < 7						

 $-1.2 \le Z \le 0.7$: very well fit-for-purpose

Intake of Chemicals **Exposure to Chemicals** $\frac{\sum_{k=1}^{K} C_{i,k} \times L_{k,j}}{BW_i}$ $I_{i,j} = \sum_{k=1}^{k} C_{i,k} \times L_{k,j}$ Total intake of chemical (j) by $|E_{i,j}$: Total exposure to chemical (j) of $I_{i,i}$: individual (i) in μg/person/day individual (i) in $\mu g/kg$ b.w./day Number of foods ingested by n: Number of foods ingested by n: individual (i) individual (i) $C_{i,k}$: Intake amount of food (k) by $C_{i,k}$: Intake of food (k) by individual (i) in individual (i) in g/day g/dav $L_{k,i}$: Concentration of chemical (j) in $|L_{k,i}$: Concentration of chemical (j) in food (k) in µg/kg food (k) in $\mu g/kg$ BW_i: Bodyweight (kg) of individual (i)

Estimation of exposure to heavy metals: the 1st year

	ND ¹)		Mean and Distribution of exposure (µg/kg b.w./day)										
	ND ⁷	Mean	(SE)	5th	10th	25th	50th	75th	90th	95th			
	LB	0.0636	0.0008	0.0073	0.0106	0.0188	0.0348	0.0679	0.1410	0.2149			
Pb	MB	0.0849	0.0008	0.0191	0.0245	0.0366	0.0568	0.0949	0.1675	0.2411			
	UB	0.1062	0.0009	0.0287	0.0363	0.0526	0.0781	0.1237	0.1977	0.2718			
	LB	0.2077	0.0044	0.0569	0.0746	0.1081	0.1586	0.2360	0.3452	0.4421			
Cd	MB	0.2190	0.0045	0.0642	0.0829	0.1170	0.1692	0.2489	0.3608	0.4616			
	UB	0.2304	0.0045	0.0709	0.0898	0.1260	0.1802	0.2620	0.3777	0.4812			
	LB	32.150	0.343	7.311	9.731	15.036	24.043	38.481	60.548	81.277			
Al	MB	32.357	0.343	7.465	9.885	15.220	24.243	38.719	60.757	81.549			
	UB	32.564	0.344	7.601	10.012	15.394	24.443	38.914	61.071	81.858			
	LB	2.508	0.038	0.235	0.363	0.683	1.437	3.033	5.523	7.857			
As	MB	2.520	0.038	0.245	0.372	0.694	1.450	3.046	5.541	7.879			
	UB	2.531	0.038	0.255	0.382	0.707	1.461	3.059	5.551	7.889			
	LB	0.3389	0.0023	0.0486	0.0968	0.1766	0.2906	0.4399	0.6268	0.7827			
I-As	MB	0.3396	0.0023	0.0490	0.0974	0.1770	0.2912	0.4403	0.6272	0.7835			
	UB	0.3403	0.0023	0.0494	0.0976	0.1775	0.2922	0.4412	0.6285	0.7847			
	LB	0.0153	0.0004	0.0000	0.0000	0.0003	0.0024	0.0154	0.0426	0.0681			
Hg	MB	0.0293	0.0004	0.0064	0.0082	0.0117	0.0181	0.0326	0.0597	0.0858			
	UB	0.0434	0.0005	0.0123	0.0155	0.0218	0.0324	0.0507	0.0801	0.1079			
Mathul	LB	0.0055	0.0003	0.0000	0.0000	0.0000	0.0000	0.0006	0.0161	0.0319			
	MB	0.0055	0.0003	0.0000	0.0000	0.0000	0.0000	0.0006	0.0161	0.0319			
-ny	UB	0.0055	0.0003	0.0000	0.0000	0.0000	0.0000	0.0006	0.0161	0.0319			

1) LB: lower bound, MB: middle bound, UB: upper bound

Contribution to heavy metal exposure by food item

		lead (µ	g/ kg b.w./day)		Cadmium (µg/kg b.w./day)					
rank	food	Mean	Contribution (%)	Cumulative %	food	Mean	Contribution (%)	Cumulative %		
1	Sweet potato	0.0099	15.5	15.5	Rice	0.0512	24.6	24.6		
2	Perilla leaves	0.0096	15.0	30.5	Scallop	0.0138	6.6	31.2		
3	Turnip greens	0.0084	13.2	43.6	Laver	0.0136	6.5	37.7		
4	Surf clam	0.0029	4.6	48.2	Squid	0.0120	5.8	43.4		
5	Rice cake	0.0026	4.0	52.2	Kimchi, Nappa	0.0088	4.2	47.7		
6	breads	0.0021	3.3	55.5	Crab	0.0073	3.5	51.2		
7	Kimchi, Nappa	0.0019	3.0	58.5	Wakame	0.0071	3.4	54.6		
8	Coffee	0.0016	2.6	61.0	Sweet rice	0.0063	3.0	57.5		
9	Wakame	0.0016	2.5	63.6	Breads	0.0042	2.0	59.6		
10	Laver	0.0015	2.3	65.9	Ramen	0.0040	1.9	61.5		
				Aluminum (µ	g/kg b.w./day)					
		rank	food	Mean	Contribution (%)	Cumulative	e %			
		1	Surf clam	2.692	8.4	8.4				
		2	Pork	2.483	7.7	16.1				
		3	Anchovies	1.654	5.1	21.2				
		4	Rice	1.487	4.6	25.8				
		5	Mussels	1.390	4.3	30.1				
			_ Green tea	1.219	3.8	33.9				
			l urnip greens	1.207	3.7	37.6				
		8	Laver	1.141	3.5	41.2				
		9	Shrimp	0.800	2.5	43.7				
SEOUL NAT	Y 서울대학교 SEOUL NATIONAL UNIVERSITY		대학교 NAL UNIVERSITY 10		Red pepper paste 0.730		2.3	45.9		● 식품의약품안전처

Contribution to heavy metal exposure by food item

Denk		Arsenic	(µg/kg b.w./day)		Inorganic arsenic (µg/kg b.w./day)				
Rank	food	Mean	Contribution (%)	Cumulative %	food	Mean	Contribution (%)	Cumulative %	
1	Laver	0.5425	21.6	21.6	Rice	0.2934	86.4	86.4	
2	Rice	0.4029	16.0	37.6	Brown rice	0.0224	6.6	92.9	
3	Wakame	0.2865	11.4	49.0	Sweet rice	0.0145	4.3	97.2	
4	Anchovies	0.1728	6.9	55.9	Rice cake	0.0094	2.8	100.0	
5	Crab	0.1629	6.5	62.4					
6	Pollack	0.1454	5.8	68.1					
7	Squid	0.1378	5.5	73.6					
8	Mackerel	0.1233	4.9	78.5					
9	Surf clam	0.1012	4.0	82.6					
10	Octopus	0.0998	4.0	86.5					
Denk		Mercur	ry (μg/kg b.w./day)			Methyl m	ercury (µg/kg b.w./	day)	
Rank	food	Mear	Contribution (%	%) Cumulative %	food	Mean	Contribution (%)	Cumulative %	
1	Squid	0.003	7 24.2	24.2	Mackerel	0.0020	36.4	36.4	
2	Mackerel	0.002	6 17.3	41.5	Tuna	0.0018	32.1	68.5	
3	Tuna	0.002	5 16.4	57.9	Pollack	0.0016	29.1	97.6	
4	Pollack	0.002	4 15.7	73.6	Anchovies	0.0001	2.4	100.0	
5	Fish paste cak	(e 0.000	8 5.6	79.1					
6	Crab	0.000	6 4.2	83.3					
7	Shrimp	0.000	6 3.7	87.0					
8	Octopus	0.000	6 3.6	90.7					
9	Brown rice	0.0004	4 2.5	93.2					
10	Surf clam	0.000	4 2.4	95.6					
····································								식품의약품안전차	

Estimation of exposure to mycotoxins: the 1st year

	ND ¹⁾		Mean and Distribution of exposure (ng/kg b.w./day)										
	ND ⁷	Mean	(SE)	5th	10th	25th	50th	75th	90th	95th			
	LB	0.1454	0.0053	0.0000	0.0002	0.0039	0.0172	0.0594	0.2914	0.7131			
Aflatoxin B ₁	MB	0.3657	0.0055	0.0927	0.1162	0.1619	0.2303	0.3527	0.6324	1.0430			
	UB	0.5861	0.0060	0.1791	0.2236	0.3102	0.4339	0.6410	1.0205	1.4342			
	LB	0.0355	0.0007	0.0000	0.0001	0.0015	0.0131	0.0427	0.0880	0.1310			
Aflatoxin B ₂	MB	0.3365	0.0017	0.1175	0.1482	0.2082	0.2955	0.4105	0.5647	0.6925			
	UB	0.6374	0.0032	0.2267	0.2851	0.3998	0.5641	0.7805	1.0635	1.2912			
	LB	0.0050	0.0001	0.0000	0.0000	0.0001	0.0012	0.0057	0.0131	0.0209			
Aflatoxin G ₁	MB	0.4369	0.0021	0.1578	0.1982	0.2761	0.3878	0.5355	0.7275	0.8804			
	UB	0.8688	0.0042	0.3127	0.3930	0.5477	0.7710	1.0650	1.4471	1.7511			
	LB	0.0357	0.0013	0.0000	0.0000	0.0000	0.0077	0.0353	0.0939	0.1501			
Aflatoxin G ₂	MB	0.7672	0.0051	0.2169	0.2827	0.4241	0.6427	0.9612	1.3749	1.7327			
	UB	1.4987	0.0097	0.4283	0.5549	0.8305	1.2583	1.8690	2.6904	3.3807			
	LB	1.223	0.018	0.000	0.007	0.123	0.470	1.386	3.209	5.017			
Fumonosin B ₁	MB	17.087	0.086	6.083	7.545	10.480	14.643	20.617	29.488	36.594			
	UB	32.952	0.163	11.873	14.646	20.392	28.370	39.869	56.538	70.110			
	LB	0.278	0.007	0.000	0.000	0.007	0.038	0.221	0.666	1.329			
Fumonisin B ₂	MB	16.915	0.085	6.015	7.462	10.414	14.523	20.550	29.120	36.183			
	UB	33.552	0.169	11.902	14.761	20.634	28.781	40.747	57.873	71.899			
	LB	0.2041	0.0039	0.0071	0.0179	0.0507	0.1127	0.2136	0.3718	0.5715			
Ochratoxin A	MB	1.4065	0.0079	0.4851	0.5981	0.8363	1.1795	1.7014	2.4894	3.1351			
	UB	2.6089	0.0137	0.9212	1.1318	1.5787	2.2157	3.1782	4.5777	5.6099			
	LB	2.3610	0.0340	0.0322	0.0994	0.3298	1.0801	2.8786	5.9764	8.7684			
Zearalenon	MB	7.6693	0.0456	2.4450	3.1196	4.4682	6.4861	9.3936	13.3255	16.7869			
	UB	12.9777	0.0664	4.5317	5.7207	8.0848	11.3994	15.9366	21.7627	26.4871			

₩ LB: hower_bound, MB: middle bound, UB: upper bound

Estimated Nutrient Intake: Iron, Zinc, Calcium & Vitamin D₃

	ND ¹⁾		Mean and Distribution of Nutrient Intake per person per day of Koreans									
	ne	Mean	(SE)	5th	10th	25th	50th	75th	90th	95th		
	LB	7.61	0.04	2.30	3.03	4.52	6.64	9.56	13.11	15.79		
Iron (mg/capita/day)	MB	7.62	0.04	2.30	3.03	4.52	6.64	9.57	13.11	15.81		
(mg/oapita/day)	UB	7.62	0.04	2.30	3.03	4.52	6.65	9.58	13.12	15.83		
	LB	9.97	0.05	3.53	4.48	6.29	8.79	12.19	16.59	20.03		
Zinc (mg/capita/day)	MB	9.98	0.05	3.54	4.48	6.29	8.80	12.20	16.60	20.04		
(mg/capita/day)	UB	9.99	0.05	3.54	4.48	6.29	8.80	12.21	16.61	20.06		
	LB	457.38	2.86	124.37	163.20	250.80	391.41	588.59	830.74	1006.02		
Calcium (mg/capita/day)	MB	457.38	2.86	124.37	163.20	250.80	391.41	588.59	830.74	1006.02		
(mg/oapita/day)	UB	457.38	2.86	124.37	163.20	250.80	391.41	588.59	830.74	1006.02		
	LB	0.292	0.006	0.000	0.000	0.000	0.092	0.301	0.609	1.034		
Vitamin D ₃	MB	0.366	0.006	0.000	0.000	0.019	0.194	0.408	0.727	1.159		
	UB	0.483	0.007	0.000	0.000	0.026	0.249	0.584	1.063	1.612		

1) LB: lower bound, MB: middle bound, UB: upper bound

Risk Assessment: Heavy Metals_2nd year

		Korean T (ug/kg l	DS 2019 ow/day)		Korean T (ug/kg l	DS 2018 bw/day)	2016 Risk Report (no	Assessment g/kg bw/day)	Reference values		
	Mean	95 th	RA , %		Mean	95 th	Mean	95 th	Reference	Туре	
Lead	0.049	0.146	12.9 (MOE)	4.3 (MOE)	0.064	0.215	0.209	0.814	0.63 ,∠g /kg b.w./day	BMDL ₁₀ , Nephrotoxic	
Cadmium	0.244	0.592	29.6	73.1	0.208	0.442	0.291	1.008	25 µg/kgb.w/month	PTMI	
Arsenic	3.027	9.705	6.1	19.4	2.508	7.857	3.647	9.625	50 ,∠g /kg b.w./day	TDI	
Mercury	0.015	0.058	2.8	10.9	0.015	0.068	0.083	0.277	3.7 ,∠g /kgb.w/week	TWI	
Aluminum	30.076	75.781	10.0	25.3	32.150	81.277			0.3 mg/kg.bw/day	TDI	

Risk Assessment: Mycotoxins_2nd year

		Korean T (ng/kg b	DS 2019 w/day)		Korean T (ng/kg)	DS 2018 bw/day)	2016 Risk Report (r	Assessment g/kg bw/day)	Reference values		
	Mean	95 th	R4	RA ,%		95 th	Mean	95 th	Reference	Туре	
Aflatoxin (B1+B2+G1+G2)	0.043	0.168	3,991 (MOE)	1,013 (MOE)	0.0398	0.1287	0.263	0.777	0.17 ,∠g /kg b.w/day	BMDL ₁₀	
Aflatoxin B1	0.022	0.078	7,763 (MOE)	2,185 (MOE)	0.0398	0.1287			0.17 ,∠g /kg b.w./day	BMDL ₁₀	
Fumonisin (B1+B2)	0.850	2.999	0.05	0.18	0.405	1.8724	49	196	1.65 ,∠g /kg b.w./day	TDI	
Ochratoxin A	0.148	0.472	0.9	3.0	0.0699	0.2537	1.882	4.051	0.11 ,µg /kgb.w/week	TWI	
Zearalenon	2.482	8.899	0.6	22	1.6702	6.4022	4.356	13.475	0.4 µg /kg bw/day	TDI	

LB: ND=0

Risk Assessment: 2 ways of ND handling _2nd year

	Pre (n	sent appro g/kg bw/da	ach ay)	Hybrid-approach (ng/kg bw/day)				
	LB	MB	UB	MB	UB			
Mycotoxin								
Aflatoxin B1	0.0219	0.2403	0.4587	0.1147	0.2075			
RA (MOE)	7,763	707	371	1,482	819			
LB: ND=0, MB: ND=1/2 LOD, UB: ND=LOD								

Nutrient Intake Estimation

Comparison with Food Composition Table based estimation

Calcium (mg/day)

Iron (mg/day)

Nutrient Intake Estimation

Comparison with Food Composition Table based estimation

Sodium (mg/day)

Potassium (mg/day)

Estimated exposure to HMs & nutrient intake w/ & w/o mapping

	w/o Map	ping	w/ Mapp	oing	Increase (fold)
	Mean	95 th	Mean	95 th	increase (ioid)
Heavy Metals (µg/kg b.w./day)					
Pb	0.064	0.215	0.084	0.282	1.31
Cd	0.208	0.442	0.243	0.513	1.17
Al	32.150	81.277	43.582	114.584	1.36
As	2.508	7.857	3.720	11.969	1.48
Hg	0.015	0.068	0.030	0.130	1.94
Mycotoxins (ng/kg b.w./day)					
Aflatoxin B ₁	0.145	0.713	0.152	0.724	1.05
Aflatoxin B ₂	0.036	0.131	0.039	0.139	1.10
Aflatoxin G₁	0.005	0.021	0.006	0.023	1.17
Aflatoxin G ₂	0.036	0.150	0.047	0.252	1.31
Fumonisin B ₁	1.223	5.017	1.328	5.297	1.09
Fumonisin B ₂	0.278	1.329	0.291	1.369	1.05
Ochratoxin A	0.204	0.572	0.228	0.668	1.12
Zearalenone	2.361	8.768	2.849	10.228	1.21
Nutrient Intake (mg/day)					
Iron	7.61	15.79	9.11	19.22	1.20
Zinc	9.97	20.03	10.92	21.61	1.10
Calcium	457.38	1006.02	540.71	1152.71	1.18
Vitamin D ₃ (µg/day)	0.29	1.03	0.36	1.41	1.24
2 III - III UL NATIONAL UNIVERSITY					● 식품의익

國

RESULTS

Number of NDs for each heavy metal by food group: 2018-2021 TDS

	Food arroup	No. of RFs	No. of		Number of	NDs (% for (each group)			
	Food group	(RF x prep. Method)	samples	Pb	Cd	AI	As	Hg		
1	Grains & cereals	19 (24)	576	358(62.2)	27(4.7)	10(1.7)	109(18.9)	496(86.1)		
2	Tubers	3 (6)	144	61(42.4)	48(33.3)	0(0.0)	33(22.9)	131(91.0)		
3	Sugars & sweets	2 (5)	120	83(69.2)	117(97.5)	11(9.2)	69(57.5)	120(100.0)		
4	Beans & pulses	3 (4)	93	49(52.7)	2(2.2)	0(0.0)	52(55.9)	93(100.0)		
5	Nuts & seeds	2 (3)	72	45(62.5)	0(0.0)	0(0.0)	35(48.6)	65(90.3)		
6	Vegetables	30 (52)	1236	682(55.2)	290(23.5)	38(3.1)	503(40.7)	1111(89.9)		
7	Mushrooms	3 (7)	168	115(68.5)	9(5.4)	17(10.1)	48(28.6)	113(67.3)		
8	Fruits	12 (12)	282	246(87.2)	233(82.6)	81(28.7)	201(71.3)	267(94.7)		
9	Meats & poultry	8 (22)	528	459(86.9)	459(86.9)	42(8.0)	161(30.5)	467(88.4)		
10	Eggs	1 (3)	72	61(84.7)	72(100.0)	4(5.6)	58(80.6)	53(73.6)		
11	Fishes & shellfishes	13 (31)	744	146(19.6)	21(2.8)	8(1.1)	5(0.7)	25(3.4)		
12	Seaweeds	2 (4)	96	0(0.0)	0(0.0)	0(0.0)	0(0.0)	30(31.3)		
13	Milk & dairy products	6 (7)	168	132(78.6)	148(88.1)	3(1.8)	114(67.9)	151(89.9)		
14	Fats & oils	4 (7)	168	150(89.3)	168(100.0)	21(12.5)	82(48.8)	123(73.2)		
15	Beverage & alcohols	14 (14)	336	268(79.8)	291(86.6)	33(9.8)	246(73.2)	318(94.6)		
16	Seasonings	11 (23)	546	323(59.2)	215(39.4)	55(10.1)	185(33.9)	463(84.8)		
17	Prepared foods	2 (4)	96	45(46.9)	1(1.0)	0(0.0)	10(10.4)	86(89.6)		
	Total	135+α (228 +α)	5445+α	3223(59.2)	2101(38.6)	323(5.9)	1911(35.1)	4112(75.5)		
│ 울 대 학 교 FOUL NATIONAL UNIVERSITY										

RESULTS

Number of detection for each mycotoxin by food group: 2018-2021 TDS

No. of Number of Detects (detection rate % for								o for each group)				
	Food group	samples	AFB1	AFB2	AFG1	AFG2	FMB1	FMB2	ΟΤΑ	ZEN		
1	Grains & cereals	576	30	4	2	1	46	18	28	126		
2	Tubers	144	0	0	0	0	0	0	0	3		
3	Sugars & sweets	120	0	0	0	0	0	0	0	3		
4	Beans & pulses	93	0	0	0	0	1	0	4	21		
5	Nuts & seeds	72	4	0	0	1	0	0	3	7		
6	Vegetables	1236	0	0	0	0	17	0	10	1		
7	Mushrooms	168	0	0	0	0	0	0	0	0		
8	Fruits	282	0	0	0	0	6	1	1	0		
9	Meats & poultry	528	1	0	0	0	31	0	1	8		
10	Eggs	72	0	0	0	0	0	0	0	0		
11	Fishes & shellfishes	744	0	0	0	0	0	0	0	1		
12	Seaweeds	96	0	0	0	0	0	0	2	12		
13	Milk & dairy products	168	1	0	0	0	1	0	4	19		
14	Fats & oils	168	12	0	0	0	0	0	46	134		
15	Beverage & alcohols	336	4	0	0	0	3	0	7	14		
16	Seasonings	546	105	25	19	0	75	42	172	139		
17	Prepared foods	96	8	0	0	0	0	0	9	4		
	Total	5445+α	165(3.0)	29(0.5)	21(0.4)	2(0.04)	180(3.3)	61(1.1)	287(5.3)	492(9.0)		
서 울 대 학 교												

RESULTS

Estimated exposure of Koreans to heavy metals: TDS year & 5 year KTDS

	KTI Tenta (ug/kg b	DS tive* w/day)	2022 (ug/kg l	TDS ow/day)	2021 (ug/kg t	TDS ow/day)	2020 (ug/kg l	TDS bw/day)	2019 (ug/kg	TDS bw/day)	2018 (ug/kg	TDS bw/day)	2016 assessm (ug/kg	∂ Risk nentreport bw/day)
	Mean	95 th	Mean	95 th	Mean	95 th	Mean	95 th	Mean	95 th	Mean	95 th	Mean	95 th
Heavy	metals												,	
Pb	0.051	0.158	0.054	0.172	0.050	0.160	0.049	0.150	0.045	0.134	0.060	0.200	0.209	0.814
Cd	0.222	0.546	0.208	0.523	0.242	0.605	0.229	0.594	0.223	0.571	0.206	0.476	0.291	1.008
As	2.648	9.297	2.437	8.703	2.833	10.200	2.655	9.701	2.777	9.444	2.536	8.703	3.647	9.625
Hg	0.015	0.060	0.013	0.057	0.015	0.061	0.022	0.072	0.013	0.053	0.012	0.059	0.083	0.277
AI	28.742	77.975	33.554	92.660	29.351	89.161	23.062	64.024	28.471	71.682	29.235	77.139	<u> </u>	-
* Based	d on 30	values	for each	'RF x I	orep me	thod' fro	m 5 yea	rs (2016	-2020 KI	NHANES	S food in	take data	a) with N	ID=0.

RESULTS Estimated exposure of Koreans to mycotoxins: TDS year & 5 year KTDS **KTDS** 2016 Risk 2022 TDS 2021 TDS 2020 TDS 2019 TDS 2018 TDS assessment report (ug/kg bw/day) 95th 95th 95th 95th 95th 95th 95th Mean Mean Mean Mean Mean Mean Mean **Mycotoxins** AF 0.119 0.031 0.018 0.043 0.020 0.116 0.044 0.039 0.145 0.036 0.121 0.263 (B1+B2+ 0.159 0.777 G1+G2) 0.093 0.018 0.043 0.017 0.100 AFB1 0.026 0.040 0.146 0.074 0.036 0.121 0.021 **FMN** 49 0.910 3.447 0.331 1.750 1.527 7.456 1.549 6.884 2.533 0.404 1.720 196 0.734 (B1+B2) 0.678 0.252 0.795 0.251 1.882 4.051 OTA 0.170 0.501 0.180 0.211 0.626 0.450 0.068 0.139 3.864 2.480 0.861 2.655 1.127 8.103 1.224 4.878 4.356 13.475 ZEN 1.241 0.775 3.677 2.218

* Based on 30 values for each 'RF x prep method' from 5 years (2016-2020 KNHANES food intake data) with ND=0.

Risk assessment (KTDS): exposure to mycotoxins

Country A

	Current method ¹⁾ (ng/kg bw/day)								ch ²⁾ (ng/kg bw/day)		Reference
	LB		MB		UB		MB		UB		value
	Mean	95"	Mean	30"	Mean	95"	ᄤᆋ	95"		95 ^{°°}	
AF (B1+B2 +G1+G2)	0.031	0.119	1.575	3.231	3.118	6.381	0.474	1.063	0.917	2.055	0.17 µg/kg b.w./day (BMDL₁₀)
MOE	5,484	1,429	108	53	55	27	359	160	185	83	(51115 = 10)
AFB1	0.026	0.093	0.202	0.408	0.377	0.752	0.090	0.205	0.153	0.338	0.17 µg/kg b.w./day
MOE	6,538	1,828	842	417	451	226	1,889	829	1,111	503	(BMDL ₁₀)
FMN (B1+B2)	0.910	3.447	20.334	40.615	39.759	79.377	7.836	18.044	14.763	34.482	1.65 µg/kg b.w./day
% TDI	0.06	0.21	1.23	2.46	2.41	4.81	0.47	1.09	0.89	2.09	(וטד)
ΟΤΑ	0.170	0.501	1.365	2.745	2.560	5.162	0.611	1.279	1.053	2.179	0.11 ,⊿g/kg b.w./wk
% TWI	1.08	3.19	8.69	17.47	16.29	32.85	3.89	8.14	6.70	13.87	(TWI)
ZEN	1.241	3.864	5.143	10.481	9.046	17.975	2.347	5.598	3.453	7.703	0.4 ⊭g/kg b.w./day
% TDI	0.31	0.97	1.29	2.62	2.26	4.49	0.59	1.40	0.86	1.93	(TDI)
1) LB = Lower Bound (ND=0), MB = Middle Bound (ND=1/2 LOD), UB = Upper Bound (ND=1 OD)											
2) LB (ND=0 for NDs with no prior detection), MB (ND=1/2 LOD) or UB (ND=LOD) for NDs with prior detection											
											식품의약품안전

Heavy metal content in rice by sampling site and season

Heavy metal content in rice by sampling site and season

Heavy metal content in napa cabbage by sampling site and season

Heavy metal content in napa cabbage by sampling site and season

Heavy metal content in red pepper powder by sampling site and season

Heavy metal content in red pepper powder by sampling site and season

Some papers published

대한지역사회영양학회지 26(1): 48~55, 2021 https://doi.org/10.5720/kjcn.2021.26.1.48 ISSN 1226-0983 (print)/2287-1624 (on-line)

RESEARCH ARTICLE

한국형 총식이조사에 근거한 우리 국민의 식품 기인 요오드 섭취량 추정

이지연1)2) · 여윤재3) · 서민정4) · 이계호5) · 김초일6)

'한국보건산업진흥원 의료서비스혁신단 건강영양관리팀, 책임연구원, '공주대학교 대학원 보건행정학과, 대학원생, '한국보건산업진흥원 의료서비스혁신단 건강영양관리팀, 연구원, '한국분석기술연구소, 분석팀장, '한국분석기술연구소, 대표이사, '한국보건산업진흥원, 기획이사

Estimation of Dietary Iodine Intake of Koreans through a Total Diet Study (TDS)

Jeeyeon Lee¹⁾²⁾, Yoonjae Yeoh³⁾, Min Jeong Seo

¹⁾Principal researcher, Nutrition Policy & Promotion Team, D Korea Health Industry Development Institute, ²⁾Graduate student, Department of Health Administration, Ka ³⁾Researcher, Nutrition Policy & Promotion Team, Depar Korea Health Industry Development Institute, ⁴⁾Team leader, Korea Research Institute of Analyta ⁵⁾Emeritus Professor, Korea Research Institute of Analyta ⁶⁾Executive Director, Korea Health Industry Development

대한지역사회영양학회지 27(3): 245~253, 2022 Korean J Community Nutr 27(3): 245~253, 2022 https://doi.org/10.5720/kjcn.2022.27.3.245 ISSN 1226-0983 (print) / 2287-1624 (on-line)

RESEARCH ARTICLE

Check for updates

우리 국민의 철 섭취량 평가: 식품별 영양성분 함량자료와 한국형 총식이조사 기반 추정량 비교

이지연^{1),2)} · 권성옥³⁾ · 여윤재⁴⁾ · 서민정^{2),5)} · 이계호⁶⁾ · 김초일^{7)†}

¹한국보건산업진흥원 고령친화서비스단, 책임연구원, ²²공주대학교 대학원 보건행정학과, 대학원생, ³¹서울대학교 생활과학연구소, 연구부교수, ⁴¹한국보건산업진흥원 인력개발실, 연구원, ⁵¹한국분석기술연구소, 분석팀장, ⁶¹한국분석기술연구소, 대표이사, ⁷¹서울대학교 생활과학대학 식품영양학과, 객원교수

Dietary Iron Intake of Koreans Estimated using 2 Different Sources of Iron Contents are Comparable: Food & Nutrient Database and Iron Contents of Cooked Foods in the Korean Total Diet Study

Jeeyeon Lee^{1),2)}, Sung Ok Kwon³⁾, Yoonjae Yeoh⁴⁾, Min Jeong Seo^{2),5)}, Gae Ho Lee⁶⁾, Cho-il Kim^{7)†}

¹⁾Principal researcher, Department of Senior-friendly Industry, Korea Health Industry Development Institute, Chungcheongbuk-do, Korea
²⁾Graduate student, Department of Health Administration, Kongju National University Graduate School, Kongju, Korea
³⁾Research associate professor, Research Institute of Human Ecology, Seoul National University, Seoul, Korea
⁴⁾Researcher, Human Resources Development Team, Department of Human resources Development, Korea Health Industry Development Institute, Chungcheongbuk-do, Korea

⁵⁾Team leader, Korea Research Institute of Analytical Technology, Daejeon, Korea ⁶⁾CEO, Korea Research Institute of Analytical Technology, Daejeon, Korea

Some papers published

LEE ET AL.: JOURNAL OF AOAC INTERNATIONAL VOL. 102, No. 6, 2019 1657

SPECIAL GUEST EDITOR SECTION

Analytical Method of Multi-Mycotoxins in Table-Ready Foods for a Total Diet Study Using Stable Isotope Dilution Liquid Chromatography–Tandem Mass Spectrometry

Youngsun LEE, Jung HEE KIM, and DA-JUNG YC Korea Institute of Science and Technology, Advanced An Republic of Korea

ChO-IL KIM and JEE-YEON LEE Korea Health Industry Development Institute, Nutrition F Heungdeok-gu, Cheongju-si, Chungcheongbuk-do 28159 HYUN-MEE PARK¹ Korea Institute of Science and Technology, Advanced An of Korea FOOD ADDITIVES & CONTAMINANTS: PART A 2020, VOL. 37, NO. 3, 408–420 https://doi.org/10.1080/19440049.2019.1697829

Check for updates

Validation of analytical methods for heterocyclic amines in seven food matrices using high-performance liquid chromatography-tandem mass spectrometry

Youngsun Lee ⁶^a, Inju Hwang^{a,b}, Haesol Kim^{a,c}, Hyeock Youn^a, Cho-II Kim^d, Jee-Yeon Lee^d and Hyun-Mee Park^a

^aAdvanced Analysis Center, Korea Institute of Science and Technology, Seoul, Republic of Korea; ^bDepartment of Chemistry, Yonsei University, Seoul, Republic of Korea; ^cDepartment of Chemistry, Yonsei University, Wonju, Republic of Korea; ^dNutrition Policy & Promotion Team, Korea Health Industry Development Institute, Cheongju-si, Republic of Korea

ABSTRACT

Heterocyclic amines (HCAs) are potent mutagens generated by the high temperatures of the cooking process. The purpose of this study was to develop and validate analytical methods for HCAs determination using high-performance liquid chromatography-tandem mass spectrometry in seven food matrices: corn oil, milk, 20% ethanol, pork, flat fish, sea mustard (*Undaria pinnatifida*), and radish. Six isotopically labelled internal standards were used for quantitation, and Chem Elut and Oasis hydrphilic-liphophilic balance cartridges were applied for sample preparation to remove interferences. Calibration curves showed good linearity ($R^2 > 0.99$) in all matrices. The ranges of the method detection limit and method quantitation limit were 0.009-2.35 ng g⁻¹ and 0.025-7.13 ng g⁻¹, respectively. The recoveries ranged from 67.5% to 119.6%. The coefficients of variation ranged from 0.3% to 15.1% for intra-day and ranged from 0.8% to 19.1% for inter-day. The methods were applied to 24 total diet study samples for HCAs quantitation. These results indicate that the established methods are reliable for determining HCAs in various foods.

ARTICLE HISTORY

Received 16 September 2019 Accepted 19 November 2019

KEYWORDS

Heterocyclic amines; LC-MS /MS; method validation; total diet study

A Way Forward...

The 1st Korean Total Diet Study will be completed by the end of 2022.

The 2nd Korean Total Diet Study will be resumed from the spring 2023 for another 5 years possibly with some change in analytes.

Any idea and/or suggestions on the stored sample utilization including international collaboration are welcome.

※ Acknowledgement: The 1st Korean Total Diet Study has been fully funded by the Ministry of Food & Drug Safety (MFDS).

THANK YOU!