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Measures of information and surprise, such as the Shannon information value (S value), quantify the signal
present in a stream of noisy data. We illustrate the use of such information measures in the context of interpreting
P values as compatibility indices. S values help communicate the limited information supplied by conventional
statistics and cast a critical light on cutoffs used to judge and construct those statistics. Misinterpretations of
statistics may be reduced by interpreting P values and interval estimates using compatibility concepts and S
values instead of “significance” and “confidence.”
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Editor’s note: The opinions expressed in this article are
those of the authors and do not necessarily reflect the views
of the American Journal of Epidemiology. A response to this
commentary appears on page 194.

Measures of information and surprise have a long history
(see Good (1), chapter 16) but have seen little use outside
the fields of engineering and mathematical statistics. Such
measures of information and surprise attempt to quantify the
signal present in a stream of noisy data. One such measure
is the Shannon information, which, when seeing an event of
probability p, is defined as s = log2(1/p) = −log2(p) and is
also known as the binary surprise index or surprisal (2). It has
been argued that this measure could aid interpretation of P
values and interval estimates, especially when the latter are
viewed as showing compatibility of data with hypotheses,
rather than stronger notions of significance or confidence
(3–5). Here we briefly illustrate these ideas in the context
of interpreting P values as compatibility indices.

THE P VALUE AS A COMPATIBILITY INDEX

A P value represents the chance of observing a data
summary (test statistic) as extreme as or more extreme
than what was seen, under a test hypothesis and auxiliary

(background) assumptions. Perhaps the most common aux-
iliary assumptions are that the observed data are randomly
sampled or treatment is randomly assigned within observed
covariate levels, and that measurement error is negligible
(6); regression models add further assumptions. Typically
the test hypothesis is that a parameter is 0 (2-sided null) or
is no greater than 0 (1-sided null), but other values can and
should be tested besides 0 (3–5, 7; also see Rothman et al.
(8), chapter 10).

A P value is valid if it would have a uniform distribution
when sampling data under the tested hypothesis given the
auxiliary assumptions used to compute it. Such a P value can
be interpreted as giving the percentile at which the observed
data fell in this distribution. The P value can thus be taken as
an index of compatibility between the data and the parameter
values specified by the tested hypothesis given the auxiliary
assumptions, ranging from p = 0 (data flatly contradict the
hypothesis) to p = 1 (data are exactly as expected under the
hypothesis) (3–5). A valid 95% confidence interval can be
constructed as the set of all parameter values with p > 0.05
(see Rothman et al. (8), chapter 10). Therefore, the values of
a 95% confidence interval have a compatibility index of 0.05
and above, and they comprise a 5%-or-more compatibility
interval (3–5), which can also, like the confidence interval,
be abbreviated using “CI.” (Some authors define a P value as
a random variable P that is uniform under the test hypothesis
and auxiliary assumptions, with p being the value of P in the
observed data).
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Consider a recent randomized trial of lopinavir and riton-
avir, versus standard care, in the treatment of severe corona-
virus disease 2019 (9) which reported 19 and 25 deaths
among 99 and 100 patients, respectively. The authors stated
that “no benefit was observed with lopinavir-ritonavir treat-
ment beyond standard care” (9, p. 1787), despite observing
a 28-day mortality risk difference of −5.8% (i.e., 19.2%
− 25.0%), with a 95% compatibility (“confidence”) inter-
val ranging from −17.3% to 5.7%. This interval includes
risk differences ranging from −17.3%, which represents
a tremendous mortality benefit, to 5.7%, which represents
a nontrivial increase in mortality. The statistics leave the
hypothesis of no benefit (i.e., a causal risk difference ≥ 0) as
reasonably compatible with the data, with 1-sided p = 0.16
(from a z score of 0.9780 (−0.0581/0.0587), where 0.0587
(0.0587 = [0.057 − (−0.173)]/3.92) is an approximate stan-
dard error). But benefits up to a risk difference of −11.6%
are even more compatible with the data, in that they have
even higher P values than does no benefit.

THE S VALUE

The S value provides a reinterpretation of the P value
using a familiar mechanical framework for calibrating
intuitions, one that is simpler and less abstract than effect
estimation from statistical models. Envision a coin-tossing
setup that we want to check for bias toward heads (as we
might be advised to do if we were going to wager on tails
from this setup). We check by tossing the coin s times. If
we observe heads on every toss, the exact P value for the
hypothesis of no bias toward heads is 0.5s, a special case of
the fact that, for m heads in n tosses, the exact P value for the
1-sided hypothesis that “the probability of heads is no

greater than μ” is
n∑

k=m

( n
k

)
μk(1 − μ)(n−k). The Shannon

measure of the information against this hypothesis is then
the binary surprisal −log2(0.5s) = s, the number of heads
in a row observed. Because s is computed using base-2 logs,
its units are said to be bits (binary digits) of information (2,
p. 32); other base units are possible (3).

A key benefit of the S value is that it provides a simple
coin-tossing framework for interpretation of P values and
confidence intervals. Returning to the coronavirus example,
the 1-sided P value of 0.16 for the no-benefit hypothesis
yields an S value of 2.6 (−log2(0.16) = 2.6). To place this
result into our coin-tossing framework, a result of all heads
in 3 fair tosses has a 0.125 (1 in 8) chance of occurring
and thus does not seem terribly surprising (albeit it is more
surprising than 2 heads in a row, where p = 0.25, and
less surprising than 4 heads in a row, where p = 0.0625).
Therefore we say that, if there is no treatment benefit, the
observed p = 0.16 is less surprising than seeing 3 heads in
a row in 3 fair tosses (because 2.6 < 3).

The P value for a benefit of 11.6% is equal to the
P value for the no-benefit hypothesis, meaning that the
data are equally compatible with (and would be equally
surprising under) both hypotheses. These data would be
even less surprising under risk differences between 0 and
11.6%. Viewing the compatibility interval of –17.3% to

Figure 1. The S value as a function of the P value.

5.7%, the data supply at most 4.3 bits of information
(−log2(0.05) = 4.3) against treatment effects ranging from
a 17.3% reduction to a 5.7% increase in mortality, and all
risk differences in this interval make the data about the same
as or less surprising than seeing 4 heads (−log2(0.05) ≈ 4)
in 4 fair tosses.

Now consider P values of 0.10, 0.05, 0.01, and 0.005.
The corresponding S values are 3.3, 4.3, 6.6, and 7.6, so
with rough rounding, these P values should seem about as
surprising as seeing 3, 4, 7, or 8 heads in a row from fair
coin-tossing. Figure 1 provides the mapping from P values
to S values. One may feel that p > 0.05 is unsurprising if
the test hypothesis is correct, given s < 4.3. That judgment
is fine; nonetheless, effect sizes with higher P values than
the test hypothesis exhibit more compatibility with the data
and have less information against them than does the test
hypothesis. Thus, p > 0.05 is not a sufficient basis for
claiming or acting as if the results support the test hypothesis
or do not support alternatives, since such dichotomizations
mask important distinctions.

The S value is based on the same assumptions as those
used to compute its source P value, and thus introduces no
new technical or validity issues. While the computations
are objectively determined by data and assumptions, their
interpretations are subject to the limitations of human cog-
nition. One should expect an event with chance 1 in 10 to
happen in one-tenth of our observations, on average. If one
hypothesizes that the event is as likely as not (i.e., chance 1
in 2), then one ought to feel no surprise if one sees 1 event
in 2 tries (2-sided p = 1, s = 0). The extent of our surprise
ought to grow, as does the S value, as the data diverge from
the hypothesis. Specifically, the S value grows by a unit for
every halving of the P value. Being a continuum, there is
no particular S value cutpoint above which one ought to be
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“surprised.” Use of the P value or S value as a continuum is
not as arbitrary as making a dichotomous comparison, say
P < 0.05. A key point here is that the S value maps directly
onto a standard game of coin-tossing, providing the highly
heterogeneous set of human observers with an easily taught
reference system, to help gauge the information content of
studies.

In conclusion, we advise that misinterpretations which
remain standard in the medical literature can be reduced
by reinterpreting P values and confidence intervals as indi-
cators of compatibility with data (rather than as indicating
significance, confidence, or support). In the above example
(9), the authors used confidence intervals as significance
tests, concluding that “no benefit was observed” because
the 95% confidence interval contained the null value (equiv-
alent to a null p > 0.05). But interpreting the P values
and confidence intervals as compatibility values and inter-
vals instead of significance tests shows that the results are
1) most compatible with a modest benefit and 2) imprecise
and therefore highly compatible with a wide range of effects.
We thus conclude that compatibility interpretations and S
values can help communicate the limited information sup-
plied by conventional statistics and can cast a critical light
on the cutoffs used to judge and construct those statistics.
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