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Abstract

Background: Researchers often misinterpret and misrepresent statistical outputs. This abuse has led to a large
literature on modification or replacement of testing thresholds and P-values with confidence intervals, Bayes factors,
and other devices. Because the core problems appear cognitive rather than statistical, we review some simple
methods to aid researchers in interpreting statistical outputs. These methods emphasize logical and information
concepts over probability, and thus may be more robust to common misinterpretations than are traditional
descriptions.

Methods: We use the Shannon transform of the P-value p, also known as the binary surprisal or S-value s =
−log2(p), to provide a measure of the information supplied by the testing procedure, and to help calibrate
intuitions against simple physical experiments like coin tossing. We also use tables or graphs of test statistics for
alternative hypotheses, and interval estimates for different percentile levels, to thwart fallacies arising from arbitrary
dichotomies. Finally, we reinterpret P-values and interval estimates in unconditional terms, which describe
compatibility of data with the entire set of analysis assumptions. We illustrate these methods with a reanalysis of
data from an existing record-based cohort study.

Conclusions: In line with other recent recommendations, we advise that teaching materials and research reports
discuss P-values as measures of compatibility rather than significance, compute P-values for alternative hypotheses
whenever they are computed for null hypotheses, and interpret interval estimates as showing values of high
compatibility with data, rather than regions of confidence.
Our recommendations emphasize cognitive devices for displaying the compatibility of the observed data with
various hypotheses of interest, rather than focusing on single hypothesis tests or interval estimates. We believe
these simple reforms are well worth the minor effort they require.

Keywords: Confidence intervals, Cognitive science, Bias, Data interpretation, Evidence, Hypothesis tests, Information,
P-values, Statistical significance, Models, statistical
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Background
Statistical science is fraught with psychological as well as
technical difficulties, yet far less attention has been given to
cognitive problems than to technical minutiae and compu-
tational devices [1, 2]. If the issues that plague science could
be resolved by mechanical algorithms, statisticians and
computer scientists would have disposed of them long ago.
But the core problems are of human psychology and social
environment, one in which researchers apply traditional
frameworks based on fallacious rationales and poor under-
standing [1, 3]. These problems have no mathematical or
philosophical solution, and instead require attention to the
unglamorous task of developing tools, interpretations and
terminology more resistant to misstatement and abuse than
what tradition has handed down.
We believe that neglect of these problems is a major

contributor to the current crisis of statistics in science
[4–9]. Several informal descriptions of statistical formu-
las may be reasonable when strictly adhered to, but
nevertheless lead to severe misinterpretations in practice.
Users tend to take extra leaps and shortcuts, hence we
need to anticipate implications of terminology and inter-
pretations to improve practice. In doing so, we find it re-
markable that the P-value is once again at the center of
the controversy [10], despite the fact that some journals
strongly discouraged reporting P-values decades ago
[11], and complaints about misinterpretation of statis-
tical significance date back over a century [12–14].
Equally remarkable is the diversity of proposed solutions,
ranging from modifications of conventional fixed-cutoff
testing [15–18] to complete abandonment of traditional
tests in favor of interval estimates [19–21] or testing
based on Bayesian arguments [22–26]; no consensus ap-
pears in sight.
While few doubt that some sort of reform is needed,

the following crucial points are often overlooked:

1) There is no universally valid way to analyze data
and thus no single solution to the problems at
hand.

2) Careful integration of contextual information and
technical considerations will always be essential.

3) Most researchers are under pressure to produce
definitive conclusions, and so will resort to familiar
automated approaches and questionable defaults
[27], with or without P-values or “statistical
significance” [28].

4) Most researchers lack the time or skills for re-
education, so we need methods that are simple to
acquire quickly based on what is commonly taught,
yet are also less vulnerable to common misinter-
pretation than are traditional approaches (or at least
have not yet become as widely misunderstood as
those approaches).

Thus, rather than propose abandoning old methods in
favor of entirely new ones, we will review simple cogni-
tive devices, terminological reforms, and conceptual
shifts that encourage more realistic, accurate interpreta-
tions of conventional statistical summaries. Specifically,
we will advise that:

a) We should replace decisive-sounding, overconfident
terms like “significance,” “nonsignificance” and
“confidence interval,” as well as proposed replace-
ments like “uncertainty interval,” with more modest
descriptors such as “low compatibility,” “high com-
patibility” and “compatibility interval” [29–31].

b) We should teach alternative ways to view P-values
and interval estimates via information measures
such as S-values (surprisals), which are the negative
logarithms of the P-values; these measures facilitate
translation of statistical test results into results from
simple physical experiments [31, 32].

c) For quantities targeted for study, we should replace
single P-values, S-values, and interval estimates by
tables or graphs of P-values or S-values showing
results for relevant alternative hypotheses as well as
for null hypotheses.

d) We should from the start teach that the usual
interpretations of statistical outputs are often
misleading even when they are technically accurate.
This is because they condition on background
assumptions (i.e., they treat them as given), and
thus they ignore what may be serious uncertainty
about those assumptions. This deficiency can be
most directly and nontechnically addressed by
treating them unconditionally, shifting their logical
status from assumptions to components of the
tested framework.

We have found that the last recommendation (to de-
condition inferences [31]) is the most difficult for
readers to comprehend, and is even resisted and misre-
presented by some with extensive credentials in statis-
tics. Thus, to keep the present paper of manageable
length we have written a companion piece [33], which
explains in depth the rationale for de-emphasizing trad-
itional conditional interpretations in favor of uncondi-
tional interpretations.

An example
We will display some of these problems and recommen-
dations with published results from a record-based co-
hort study of serotonergic antidepressant prescriptions
during pregnancy and subsequent autism spectrum dis-
order (ASD) of the child (Brown et al. [34]). Out of 2837
pregnancies that had filled prescriptions, approximately
2% of the children were diagnosed with ASD. The paper
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first reported an adjusted ratio of ASD rates (hazard ra-
tio or HR) of 1.59 when comparing mothers with and
without the prescriptions, and 95% confidence limits
(CI) of 1.17 and 2.17. This estimate was derived from a
proportional-hazards model which included maternal
age, parity, calendar year of delivery, neighborhood in-
come quintile, resource use, psychotic disorder, mood
disorder, anxiety disorder, alcohol or substance use dis-
order, use of other serotonergic medications, psychiatric
hospitalization during pregnancy, and psychiatric emer-
gency department visit during pregnancy.
The paper then presented an analysis with adjustment

based on a high-dimensional propensity score (HDPS),
in which the estimated hazard ratio became 1.61 with a
95% CI spanning from 0.997 to 2.59. Despite the esti-
mated 61% increase in the hazard rate in the exposed
children and an interval estimate including ratios as
large as 2.59 and no lower than 0.997, the authors still
declared that there was no association between in utero
serotonergic antidepressant exposure and ASD because
it was not “statistically significant.” This was a misinter-
pretation of their own results because an association was
not only present, but also quite close to the 70% increase
they reported from previous studies [35]. Yet the media
simply repeated Brown et al.’s misstatement that there
was no association after adjustment [36].
This type of misreporting remains common, despite

the increasing awareness that such dichotomous think-
ing is detrimental to sound science and the ongoing ef-
forts to retire statistical significance [23, 29, 37–42]. To
aid these efforts, we will explain the importance of
showing results for a range of hypotheses, which may
help readers see why conclusions such as in Brown et al.
[34, 36] represent dramatic misinterpretations of statis-
tics – even though the reported numeric summaries are
correct. We will also explain why it would be correct to
instead have reported that “After HDPS adjustment for
confounding, a 61% hazard elevation remained; however,
under the same model, every hypothesis from no eleva-
tion up to a 160% hazard increase had p > 0.05; Thus,
while quite imprecise, these results are consistent with
previous observations of a positive association between
serotonergic antidepressant prescriptions and subse-
quent ASD. Because the association may be partially or
wholly due to uncontrolled biases, further evidence will be
needed for evaluating what, if any, proportion of it can be
attributed to causal effects of prenatal serotonergic anti-
depressant use on ASD incidence.” We believe this type of
language is careful and nuanced, and that such cautious
attention to detail is essential for accurate scientific
reporting. For simplicity and consistency with common
practice we have used the 0.05 cutoff in the description,
but recognize that researchers may be better served by
choosing their descriptive approach as well as decision

cutoffs based on background literature and error costs, ra-
ther than using traditional conventions [16].

Methods
Making sense of tests, I: the P-value as a compatibility
measure
The infamous observed P-value p (originally called the
observed or attained “level of significance” or “value of
P” [43–45]) is a measure of compatibility between the
observed data and a targeted test hypothesis H, given a
set of background assumptions (the background model)
which are used along with the hypothesis to compute
the P-value from the data. By far the most common ex-
ample of a test hypothesis H is a traditional null hypoth-
esis, such as “there is no association” or (more
ambitiously) “there is no treatment effect.” In some
books this null hypothesis is the only test hypothesis
ever mentioned. Nonetheless, the test hypothesis H
could just as well be “the treatment doubles the risk” or
“the treatment halves the risk” or any other hypothesis
of practical interest [46]; we will argue such alternatives
to the null should also be tested whenever the traditional
null hypothesis is tested. Our discussion will also apply
when H concerns multiple parameters and thus the test
involves multiple degrees of freedom, for example a gen-
eral test of linearity of trend (dose-response) when a
treatment has 5 levels (which has 3 degrees of freedom).
With this general background about the test hypoth-

esis, the other key ingredient in traditional statistical
testing is a test statistic, such as a Z-score or χ2, which
measures the discrepancy between the observed data
and what would have been expected under the test hy-
pothesis, given the background assumptions. We can
now define an observed P-value p as the probability of
the test statistic being at least as extreme as observed if
the hypothesis H targeted for testing and every assump-
tion used to compute the P-value (the test hypothesis H
and the background statistical model) were correct [46].
Those background assumptions typically include a host
of conditions such as linearity of responses and additiv-
ity of effects on a given scale; appropriateness of in-
cluded variables (e.g., no intermediates for the effect
under study); unimportance of omitted variables (e.g., all
important confounding is controlled), random errors in
a given family, no selection bias, and full accounting for
measurement error and model selection.
This accurate and technical description does not ac-

cord well with human psychology, however: It is often
said by Bayesians that researchers want a probability for
the targeted test hypothesis (posterior probability of H),
not a probability of observations. This imperative is indi-
cated by the many “intuitive” – and incorrect – verbal
definitions and descriptions of the P-value that amount
to calling it the probability of the test hypothesis, which
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is quite misleading [46]. Such errors are often called in-
version fallacies because they invert the role of the ob-
servations and the hypothesis in defining the P-value
(which is a probability for the observed test statistic, not
the test hypothesis).
A standard frequentist criterion for judging whether a

P-value is valid for statistical testing is that all possible
values for it from zero to one are equally likely (uniform
in probability) if the test hypothesis and background as-
sumptions are correct. We discuss this criterion in more
detail in the Supplement. With this validity criterion
met, we can also correctly describe the P-value without
explicit reference to repeated sampling, as the percentile
or proportion at which the observed test statistic falls in
the distribution for the test statistic under the test hy-
pothesis and the background assumptions [47, 48]. The
purpose of this description is to connect the P-value to a
familiar concept, the percentile at which someone’s
score fell on a standard test (e.g., a college or graduate
admissions examination), as opposed to the remote ab-
straction of infinitely repeated sampling.

Making sense of tests, II: the S-value
Even when P-values are correctly defined and valid, their
scaling can be deceptive due to their compression into
the interval from 0 to 1, with vastly different meanings
for absolute differences in P-values near 1 and the same
differences for P-values near 0 [31], as we will describe
below. One way to reduce test misinterpretations and
provide more intuitive numerical results is to translate
the P-values into probabilities of outcomes in familiar
games of chance.
Consider a game in which one coin will be tossed and

we will bet on tails. Before playing however we want evi-
dence that the tossing is acceptable for our bet, by which
we mean not biased toward heads, because such loading
would make our losing more probable than not. To
check acceptability, suppose we first do s independent
test tosses and they all come up heads. If the tossing is
acceptable, the chance of this happening is at most ½s,
the chance of all heads in s unbiased (fair) tosses. The
smaller this chance, the less we would trust that the
game is acceptable. In fact we could take s as measuring
our evidence against acceptability: If we only did one
toss and it came up heads (s = 1) that would be unsur-
prising if the tossing were unbiased for then it would
have chance ½, and so would provide barely any evi-
dence against acceptability. But if we did 10 tosses and
all came up heads (s = 10) that would be surprising if the
tossing were unbiased, for the chance of that is then
½10 ≈ 0.001, and so would provide considerably more
evidence against acceptability.
With this setting in mind, we can now gauge the evi-

dence supplied by a P-value p by seeing what number s of

heads in a row would come closest to p, which we can find
by solving the equation p =½s for s. The solution is the
negative base-2 logarithm of the P-value, s = log2(1/p) =
−log2(p), known as the binary Shannon information, sur-
prisal, logworth, or S-value from the test [31, 49, 50]. The
S-value is designed to reduce incorrect probabilistic inter-
pretations of statistics by providing a nonprobability meas-
ure of information supplied by the test statistic against the
test hypothesis H [31].
The S-value provides an absolute scale on which to view

the information provided by a valid P-value, as measured
by calibrating the observed p against a physical mechan-
ism that produces data with known probabilities. A single
coin toss produces a binary outcome which can be coded
as 1 = heads, 0 = tails, and thus requires only two symbols
or states to record or store; hence the information in a
single toss is called bit, short for binary digit, or a shan-
non. The information describing a sequence of s tosses re-
quires s bits to record or store; thus, extending this
measurement to a hypothesis H with P-value p, we say the
test supplied s = −log2(p) bits of information against H.
We emphasize that, without further restrictions, our cali-

bration of the P-value against coin-tossing is only measur-
ing information against the test hypothesis, not in support
of it. This limitation is for the purely logical reason that
there is no way to distinguish among the infinitude of back-
ground assumptions that lead to a test with the same or lar-
ger P-value and hence the same or smaller S-value. There is
no way the data can support a test hypothesis except rela-
tive to a fixed set of background assumptions. Rather than
taking the background assumptions for granted, we prefer
instead to adopt a refutational view, which emphasizes that
any claim of support will be undermined by assumption
uncertainty, and is thus best avoided. This caution applies
regardless of the test statistic used, whether P-value, S-
value, Bayes factor, or posterior probability.
As with the P-value, the S-value refers only to a particu-

lar test with particular background assumptions. A differ-
ent test based on different background assumptions will
usually produce a different P-value and thus a different S-
value; thus it would be a mistake to simply call the S-value
“the information against the hypothesis supplied by the
data”, for it is always a test of the hypothesis conjoined
with (or conditioned on) the assumptions. As a basic ex-
ample, we may contrast the P-value for the strict null hy-
pothesis (of no effect on any experimental unit)
comparing two experimental groups using a t-test (which,
along with randomization, assumes normally distributed
responses under the null hypothesis), to the P-value from
a permutation test (which assumes only randomization).
Finally, as explained in the Supplement, the S-value

can also be expressed using other logarithmic units such
as natural (base-e) logs, −ln(p), which is mathematically
more convenient but not as easy to represent physically.
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Evaluating P-values and fixed-cutoff tests with S-values
With the S-value in hand, a cognitive difficulty of the P-value
scale for evidence can be seen by first noting that the differ-
ence in the evidence provided by P-values of 0.9999 and 0.90
is trivial: Both represent almost no information against the
test hypothesis, in that the corresponding S-values are
−log2(0.9999) = 0.00014 bits and− log2(0.90) = 0.15 bits. Both
are far less than 1 bit of information against the hypothesis –
they are just a fraction of a coin toss different. In contrast,
the information against the test hypothesis in P-values of
0.10 and 0.0001 is profoundly different, in that the corre-
sponding S-values are −log2(0.10) = 3.32 and− log2(0.0001) =
13.3 bits; thus p= 0.001 provides 10 bits more information
against the test hypothesis than does p= 0.10, corresponding
to the information provided by 10 additional heads in a row.
The contrast is illustrated in Fig. 1, along with other exam-
ples of the scaling difference between P and S values.
As an example of this perspective on reported results,

from the point and interval estimate from the HDPS
analysis reported by Brown et al. [34], we calculated that
the P-value for the “null” test hypothesis H that the haz-
ard ratio is 1 (no association) is 0.0505. Using the S-
value to measure the information supplied by the HDPS
analysis against this hypothesis, we get s =
−log2(0.0505) = 4.31 bits; this is hardly more than 4 coin
tosses worth of information against no association. For
comparison, when setting the test hypothesis H to be
that the hazard ratio is 2 (doubling of the hazard among
the treated), we calculated a P-value of about 0.373. The

information supplied by the HDPS analysis against this
test hypothesis is then measured by the S-value as s =
−log2(0.373) = 1.42 bits, hardly more than a coin-toss
worth of information against doubling of the hazard
among the treated. In these terms, then, the HDPS re-
sults supply roughly 3 bits more information against no
association than against doubling of the hazard, so that
doubling (HR = 2) is more compatible with the analysis
results than is no association (HR = 1).
S-values help clarify objections to comparing P-values

to sharp dichotomies. Consider that a P-value of 0.06
yields about 4 bits of information against the test hy-
pothesis H, while a P-value of 0.03 yields about 5 bits of
information against H. Thus, p = 0.06 is about as surpris-
ing as getting all heads on four fair coin tosses while p =
0.03 is one toss (one bit) more surprising. Even if one is
committed to making a decision based on a sharp cutoff,
S-values illustrate what range around that cutoff corre-
sponds to a trivial information difference (e.g., any P-
value between 0.025 and 0.10 is less than a coin-toss dif-
ference in evidence from p = 0.05).
S-values also help researchers understand more subtle

problems with traditional testing. Consider for example
the import of the magical 0.05 threshold (α-level) that is
wrongly used to declare associations present or absent.
It has often been claimed that this threshold is too high
to be regarded as representing much evidence against H
[15, 26], but the arguments for that are usually couched
in Bayesian terms of which many remain skeptical. We

Fig. 1 Comparison of P-value and S-value scales. Top labels: Data compatibility with test model as measured by P-values. Bottom labels:
Information against test model as measured by S-values
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can however see those objections to 0.05 straightfor-
wardly by noting that the threshold translates into re-
quiring an S-value of only −log2(0.05) = 4.32 bits of
information against the null; that means p = 0.05 is
barely more surprising than getting all heads on 4 fair
coin tosses.
While 4 heads in a row may seem surprising to some in-

tuitions, it does in fact correspond to doing only 4 tosses
to study the coin; a sample size of N = 4 binary outcomes
would rarely qualify as a basis for (say) recommending a
new treatment even if all 4 patients recovered but the re-
covery rate without the treatment was known to be 50%.
Thus, like other proposals, the S-value calls into question
the traditional α = 0.05 standard, and may help users
realize how little information is contained in most P-
values when compared to the thousands of bits of infor-
mation in a typical cell-phone directory. Further crucial
information will be given by P-values and S-values tabu-
lated for several alternative hypotheses, interval estimates
over varying percentiles, and graphs of data and informa-
tion summaries such as those illustrated below.

Further advantages of S-values
Unlike probabilities, S-values are unbounded above and can
be added over independent information sources to create sim-
ple summary tests [55 p. 80; see also our supplement]. They
thus provide a scale for comparing and combining test results
across studies that is aligned with information rather than
probability measurement [31]. Another advantage of S-values
is that they help thwart inversion fallacies, in which a P-value
is misinterpreted as a probability of a hypothesis being correct
(or equivalently, as the probability that a statement about the
hypothesis is in error). Hypothesis probabilities computed
using the data are called posterior probabilities (because they
come after the data). It is difficult to confuse an S-value with a
posterior probability because the S-value is unbounded above,
and in fact will be above 1 whenever the P-value is below
0.50.
Probabilities of data summaries (test statistics) given

hypotheses and probabilities of hypotheses given data
are identically scaled, leading users to inevitably conflate
P-values with posterior probabilities. This confusion
dominates observed misinterpretations [46] and is in-
vited with open arms by “significance” and “confidence”
terminology. Such mistakes could potentially be avoided
by giving actual posterior probabilities along with P-
values. Bayesian methods provide such probabilities but
require prior distributions as input; in turn, those priors
require justifications based on often contentious back-
ground information. While the task of creating such dis-
tributions can be instructive, this extra input burden has
greatly deterred adoption of Bayesian methods; in con-
trast, S-values provide a direct quantification of informa-
tion without this input.

Table 1 provides a translation of the P-value to the
binary S-value s = −log2(p). It also gives the correspond-
ing maximum-likelihood ratio (MLR), and the deviance-
difference or likelihood-ratio test statistic 2ln(MLR), as-
suming that H is a simple hypothesis about one param-
eter (e.g., that a mean difference or regression coefficient
is zero) and that the statistic has a 1 degree of freedom
χ2 distribution; see the Appendix and Supplement for
further details. The MLR and deviance statistic are
themselves often treated as measures of information
against H under the background assumptions (fortuit-
ously, when rounding to the nearest integer, the binary
S-value and deviance statistic coincide in the often-
contentious P-value range of 0.005 to 0.10). The table
also shows the different alpha levels used in various
fields and the stark contrast in information associated
with these cutoffs. The alpha levels used in particle
physics and genome-wide association studies (GWAS)
are extremely small because in those areas false positives
are considered far more likely and costly than false nega-
tives: Discovery declarations in particle physics require
“5 sigmas”, nearly 22 bits of information against H (cor-
responding to all heads in 22 fair coin tosses), while
GWAS requires nearly 27 bits; for discussions of these
choices see [51, 52].
Further details of the relations among these and other

measures are given in the Supplement. Table 2 presents
these measures as computed from the Brown et al. re-
port [34]; it can again be seen that by any measure there
is more information against the null (equal hazards
across treatment, S = 4.31) than against doubling of the
hazard (HR = 2, S = 1.42), so the claim that these results
demonstrate or support no association is simply wrong.
In summary, the S-value provides a gauge of the infor-

mation supplied by a statistical test in familiar terms of
coin tosses. It thus complements the probability inter-
pretation of a P-value by supplying a mechanism that
can be visualized with simple physical experiments.
Given amply documented human tendencies to under-
estimate the frequency of seemingly “unusual” events
[53], these experiments can guide intuitions about what
evidence strength a given P-value actually represents.

Replace unrealistic “confidence” claims with compatibility
measures
Confidence intervals (commonly abbreviated as CI) have
been widely promoted as a solution to the problems of
statistical misinterpretation [19, 21]. While we support
their presentation, such intervals have difficulties of their
own. The major problem with “confidence” is that it en-
courages the common confusion of the CI percentile
level (typically 95%) with the probability that the true
value of the parameter is in the interval (mistaking the
CI for a Bayesian posterior interval) [46], as in
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statements such as “we are 95% confident that the true
value is within the interval.”
The fact that “confidence” refers to the procedure be-

havior, not the reported interval, seems to be lost on
most researchers. Remarking on this subtlety, when Jerzy
Neyman discussed his confidence concept in 1934 at a
meeting of the Royal Statistical Society, Arthur Bowley
replied, “I am not at all sure that the ‘confidence’ is not
a confidence trick.” [54]. And indeed, 40 years later, Cox
and Hinkley warned, “interval estimates cannot be taken
as probability statements about parameters, and fore-
most is the interpretation ‘such and such parameter
values are consistent with the data.’” [55]. Unfortunately,
the word “consistency” is used for several other concepts
in statistics, while in logic it refers to an absolute condi-
tion (of noncontradiction); thus, its use in place of “con-
fidence” would risk further confusion.
To address the problems above, we exploit the fact

that a 95% CI summarizes the results of varying the test
hypothesis H over a range of parameter values,

displaying all values for which p > 0.05 [56] and hence
s < 4.32 bits [31, 57]. Thus the CI contains a range of
parameter values that are more compatible with the data
than are values outside the interval, under the back-
ground assumptions [31, 46]. Unconditionally (and thus
even if the background assumptions are uncertain), the
interval shows the values of the parameter which, when
combined with the background assumptions, produce a
test model that is “highly compatible” with the data in
the sense of having less than 4.32 bits of information
against it. We thus refer to CI as compatibility intervals
rather than confidence intervals [30, 31, 57]; their abbre-
viation remains “CI.” We reject calling these intervals
“uncertainty intervals,” because they do not capture un-
certainty about background assumptions [30].
Another problem is that a frequentist CI is often used

as nothing more than a null-hypothesis significance test
(NHST), by declaring that the null parameter value (e.g.,
HR = 1) is supported if it is inside the interval, or refuted
if it is outside the interval. These declarations defeat the

Table 1 P-values and binary S-values, with corresponding maximum-likelihood ratios (MLR) and deviance (likelihood-ratio) statistics
for a simple test hypothesis H under background assumptions A

P-value p (compatibility of H with data
given A)

S-value s = −log2(p) (information against H
given A in bits)

Maximum-likelihood ratio against H
given A

Deviance statistic
2ln(MLR)

0.99 0.014 1.00 0.00016

0.90 0.15 1.01 0.016

0.50 1.00 1.26 0.45

0.25 2.00 1.94 1.32

0.10 3.32 3.87 2.71

0.05 4.32 6.83 3.84

0.025 5.32 12.3 5.02

0.01 6.64 27.6 6.63

0.005 7.64 51.4 7.88

0.0001 13.3 1935 15.1

5 sigmaa (~ 2.9 in 10 million) 21.7 5.2 × 105 26.3

1 in 100 million (GWAS) 26.6 1.4 × 107 32.8

6 sigmaa (~ 1 in a billion) 29.9 1.3 × 108 37.4
a5 and 6 sigma cutoffs are the upper standard-normal tail probabilities at 5 and 6 standard deviations above the mean [51]

Table 2 Reanalysis of the Brown et al. HDPS results [34]a

Test Hypothesis (H) P-value (compatibility) S-value (bits of information) Maximum-likelihood ratio Likelihood-ratio statistic

Halving of hazard, HR = 0.5 1.6 × 10− 6 19.3 1.0 × 105 23.1

No association (null), HR = 1 0.0505 4.31 6.77 3.82

Point estimate, HR = 1.61 1.00 0.00 1.00 0.00

Doubling of hazard, HR = 2 0.373 1.42 1.49 0.79

Tripling of hazard, HR = 3 0.01 6.56 26.2 6.53

Quintupling of hazard, HR = 5 3.3 × 10−6 18.2 5.0 × 104 21.7
aComputed from the normal approximations given in the Appendix
P-values, S-values, maximum-likelihood ratios, and likelihood-ratio statistics for several test hypotheses about the hazard ratio (HR) computed from Brown et al.
HDPS results [34].
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use of interval estimates to summarize information
about the parameter, and perpetuate the fallacy that in-
formation changes abruptly across decision boundaries
[40, 46, 57, 58]. In particular, the usual 95% default
forces the user’s focus onto parameter values that yield
p > 0.05, without regard to the trivial difference between
(say) p = 0.06 and p = 0.04 (an information difference far
smaller than a coin toss). Even differences convention-
ally seen as “large” are often minor in information terms,
e.g., p = 0.02 and p = 0.16 represent a difference of only
log2(0.16/0.02) = 3 coin tosses, underscoring the caution
that the difference between “significance” and “nonsigni-
ficance” is not significant [59].
To address this problem, we first note that a 95%

interval estimate is only one of a number of arbitrary di-
chotomization of possibilities of parameter values (into
either inside or outside of an interval). A more accurate
picture of information is then obtained by examining in-
tervals using other percentiles, e.g., proportionally-
spaced compatibility levels such as p > 0.25, 0.05, 0.01,
which correspond to 75, 95, 99% CIs and equally-spaced
S-values of s < 2, 4.32, 6.64 bits. When a detailed picture
is desired, a table or graph of P-values and S-values
across a broad range of parameter values seems the
clearest way to see how compatibility varies smoothly
across the values.

Gradations, not dichotomies
Graphs of P-values or their equivalent have been pro-
moted for decades [40, 60–62], yet their adoption has
been slight. Nonetheless, P-value and S-value graphing
software is now available freely through several statistical
packages [63, 64]. A graph of the P-values p against pos-
sible parameter values allows one to see at a glance which
parameter values are most compatible with the data under
the background assumptions. This graph is known as the
P-value function, or compatibility, consonance, or confi-
dence curve [40, 60–62, 65–69]; the “severity curve” ([18],
fig. 5.5) is a special case (see Supplement). Transforming
the corresponding P-values in the graph to S-values pro-
duces an S-value (surprisal) function.
Most studies not only examine but also present re-

sults for multiple associations and models, and exam-
ining or presenting graphs for each of the results may
be impractical. Nonetheless, as in the Brown et al. ex-
ample, there is often a “final” analysis or set of results
that is used to generate the highlighted conclusions
of the study. We strongly advise inspecting graphs for
those analyses before writing conclusions, and pre-
senting the graphs in the paper or at least in a sup-
plementary file. As mentioned above, it is quite easy
to now construct these curves using various statistical
packages [63].

Example, continued
Figures 2 and 3 give the P-value and S-value graphs pro-
duced from the Brown et al. [34] data, displaying an esti-
mated hazard ratio of 1.61 and 95% limits of 0.997, 2.59
(see Appendix for computational details). Following the
common (and important) warning that P-values are not
hypothesis probabilities, we caution that the P-value
graph is not a probability distribution: It shows compati-
bility of parameter values with the data, rather than
plausibility or probability of those values given the data.
This is not a subtle difference: compatibility is a much
weaker condition than plausibility. Consider for example
that complete fabrication of the data is always an explan-
ation compatible with the data (and indeed has hap-
pened in some influential medical studies [70]), but in
studies with many participants and authors involved in
all aspects of data collection it becomes so implausible
as to not even merit mention. We emphasize then that
all the P-value ever addresses in a direct logical sense is
compatibility; for hypothesis probabilities one must turn
to Bayesian methods [31].
The P-value graph rises past HR = 1 (no association, a

parameter value which we have only plotted for demon-
stration purposes) until it peaks at the point estimate of
1.61, which coincides with the smallest S-value. The
graphs show how rapidly the P-values fall and the S-values
rise as we move away from the point estimate. CIs at the
75, 95, and 99% levels can be read off the graph as the
range between the parameter values where the graph is
above P = 0.25, 0.05, and 0.01. Both Figs. 2 and 3 illustrate
how misleading it is to frame discussion in terms of
whether P is above or below 0.05, or whether the null
value is included in the 95% CI: Every hazard ratio from 1
to 2.58 is more compatible with the Brown et al. data ac-
cording to the HDPS analysis, and has less information
against it than does the null value of 1. Thus, the graphs il-
lustrate how the Brown et al. analysis provides absolutely
no basis for claiming the study found “no association.” In-
stead, their analysis exhibits an association similar to that
seen in earlier studies and should have been reported as
such, even though it leaves open the question of what
caused the association (e.g., a drug effect, a bias, a positive
random error, or some combination) and whether a clinic-
ally important effect is present.

Discussion
We now discuss several basic issues in the use of the
methods we have described. The Supplement discusses
several more technical topics mentioned earlier and
below: Different units for the S-value besides base-2 logs
(bits); the importance of uniformity (validity) of the P-
value for interpretation of the S-value; and the relation
of the S-value to other measures of statistical informa-
tion about a test hypothesis or model.
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Moving forward
Most efforts to reform statistical reporting have pro-
moted interval estimates [19, 21] or Bayesian methods
[26] over P-values. There is nonetheless scant empirical
evidence that these or any proposals (including ours)
have improved or will improve reporting without accom-
panying editorial and reviewer efforts to enforce proper
interpretations. Instead, the above example and many
others [31, 71, 72] illustrate how, without proper editor-
ial monitoring, interval estimates are often of no help

and can even be harmful when journals force dichotom-
ous interpretations onto results, for example as does
JAMA [73].
Cognitive psychology and its offshoot of behavioral

economics (the “heuristics and biases” literature) have
been studying misperceptions of probability for at least a
half-century (e.g., see the anthologies of [74, 75]), with
increasing attention to the harms of null-hypothesis sig-
nificance testing (e.g., [2, 76]). Informal classroom obser-
vations on the devices we discuss have been encouraging

Fig. 2 P-Values for a range of hazard ratios (HR). A compatibility graph in which P-values are plotted across alternative hazard ratios. Computed
from results in Brown et al. [34]. Compatibility intervals (CI) in percents can be read moving from the right-hand axis to the bottom (HR) axis.
HR = 1 represents no association

Fig. 3 S-Values (surprisals) for a range of hazard ratios (HR). An information graph in which S-values are plotted across alternative hazard ratios.
Computed from results in Brown et al. [34]. HR = 1 represents no association
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(both our own and those reported to us anecdotally by
colleagues), leading to the present exposition.
We would thus encourage formal experiments to study

cognitive devices like those we discuss. To justify such
effort, the devices must be well-grounded in statistical
theory (as reviewed in the prequel to this article [31]),
and should be clearly operationalized, as the current art-
icle attempts to do. These preliminaries are especially
important because prevailing practice is cemented into
nearly a century of routine teaching and journal de-
mands; thus, any comparison today will be dramatically
confounded by tradition and exposure. Addressing this
imbalance will require detailed instruction in the graph-
ical information perspective, as illustrated here.

Tests of model fit
For simplicity we have focused on tests of specific hy-
potheses given a set of assumptions (the background
model). The S-value can also be used to measure infor-
mation against a data model, as supplied by the P-value
from general tests of fit of a model to the data (such as
the Pearson [44] chi-squared test of fit). In those tests,
all deviations of the data from the model predictions
contribute to lack of fit and are cumulated as evidence
against the model. In yet another unfortunate misnam-
ing, these tests have come to be called “goodness of fit”
tests, when in fact the test statistics are measuring misfit
(in Pearson’s case, squared distances between the predic-
tions and observations). The P-value accounts for the re-
sidual degrees of freedom for the misfit, but as discussed
before, is scaled in a nonintuitive way: It shrinks to zero
as misfit increases, even when misfit can increase indef-
initely. The S-value restores the proper relation to the fit
as seen in the original test statistic, where the cumulative
information against the model growing larger without
bound as misfit increases without bound.

Connections to Bayesian and information statistics
Our development has been based on conventional fre-
quentist statistics, which focus on probabilities of various
statistical observations (data features). There are several
connections of P-values and compatibility intervals to
Bayesian statistics, which are expressed in terms of hy-
pothesis probabilities; for a basic review see [77]. These in
turn lead to connections to S-values. Consider for example
a one-sided P-value p for a directional hypothesis; under
certain assumptions p is a lower bound on the posterior
probability that the hypothesis is false, and the S-value s =
−log2(p) can be interpreted as the maximum surprisal in
finding the hypothesis is false, given the data and assump-
tions. The Supplement describes a connection to Bayes
factors, “safe testing”, and testing by betting scores.

Some cautions
Demands for more statistical evidence against test hypotheses
increase the need for numerical accuracy, especially because
traditional normal Z-score (Wald) approximations (used by
most software to derive P-values and compatibility intervals
under nonlinear models) deteriorate as the P-value or α-level
becomes smaller [78]. Adding that approximation error to the
usual study uncertainties, we do not expect P-values below
0.001 from Z-scores to have more than 2-digit accuracy, and
thus (outside of numeric illustrations) advise rounding S-
values above −log2 (0.001)≈ 10 to the nearest integer.
The S-values for testing the same hypothesis from K

independent studies can be summed to provide a sum-
mary test statistic for the hypothesis (see Supplement).
A caution is needed in that the resulting sum will have
an expectation equal to K under the hypothesis and
background assumptions. Thus its size must be evalu-
ated against a distribution that increases with K (specif-
ically, by doubling the sum and comparing it to a χ2

distribution with 2 K degrees of freedom) [31, 79].
As discussed in the Supplement, in Bayesian set-

tings one may see certain P-values that are not valid
frequentist P-values, the primary example being the
posterior predictive P-value [80, 81]; unfortunately,
the negative logs of such invalid P-values do not
measure surprisal at the statistic given the model, and
so are not valid S-values.
As mentioned earlier, one purpose of converting P-

values to S-values is to thwart the fallacy of mistaking
data probabilities like a P-value for hypotheses probabil-
ities. It is often said that this fallacy is addressed by
Bayesian methods because they give the reader hypoth-
esis probabilities. A problem with such probabilities is
that deriving them requires the analyst to supply a prior
distribution (“prior”) that supplies initial probabilities for
competing hypotheses. In many serious applications,
there is no simple, universal, and reliable guide to choos-
ing a prior (other than as a shrinkage/penalization/
regularization device to improve certain frequency prop-
erties), and thus posterior probability statements can
vary considerably across analysts even when there is no
disagreement about frequentist results [82]. That prob-
lem is precisely why frequentists reject Bayesian
methods as a general foundation for data analysis.
In sharp contrast, frequency models for the data can

be enforced by experimental devices, producing infor-
mation that can be quantified even without agreement
about a prior distribution for targeted quantities. This
quantification does not preclude a further analysis
which combines the experimental information with ex-
ternal information encoded in a penalty function or
prior distribution (which may be partial [83]). Nor does
it free data analysts from responsibility to weaken their
interpretations when using methods derived from
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devices or assumptions that are not known to be opera-
tive [33]. For example, explanations for results from
randomization tests in nonrandomized studies must in-
clude not only treatment effects and random error
among possible explanations, but also effects of
randomization failure [84, 85].
Finally, we caution that Gelman and Carlin [86] refer

to erroneously inferring the wrong sign of a parameter
as “type-S error”, an entirely different usage of “S”.

Tests of different values for a parameter vs. tests of
different parameters
Even if all background assumptions hold, no single num-
ber (whether a P-value, S-value, or point estimate) can
by itself provide an adequate measure of sample infor-
mation about a targeted parameter, such as a mean dif-
ference, a hazard ratio (HR), or some other contrast
across treatment groups. We have thus formulated our
description to allow the test hypothesis H to refer to dif-
ferent values for the same parameter. For example, H
could be “HR = 1”, the traditional null hypothesis of no
change in hazard rate across compared groups; but H
could just as well be “HR = 2”, or “HR ≤ 2”, or even “½
≤ HR ≤ 2” [31]. In all these variations, the set of auxiliary
assumptions (background model) used to compute the
statistics stay unchanged; only H is changing. Uncondi-
tionally, the S-values for the different H are measuring
information against different restrictions on HR beyond
the background assumptions, which stay the same.
A similar comment applies when, in a model, we test

different coefficients: The background assumptions are
unchanged, only the targeted test hypothesis H is chan-
ging, although now the change is to another parameter
(rather than another value for the same parameter). For
example, in a model for effects of cancer treatments we
might compute the P-value and S-value from a test of
Hr = “the coefficient of radiotherapy is zero” and an-
other P-value and S-value from a test of Hc = “the coeffi-
cient of chemotherapy is zero.” Conditionally, these 2 S-
values are giving information against different target hy-
potheses Hr and Hc using the same background model;
for example, using a proportional-hazards model, that
background includes the assumption that the effects of
different treatments on the hazard multiply together to
produce the total effect of all treatments combined. Un-
conditionally, these S-values are measuring information
against different test models: a model with no effect of
radiotherapy but allowing an effect of chemotherapy,
and a model allowing an effect of radiotherapy but no
effect of chemotherapy; all other assumptions are the
same in both models (including possibly unseen and in-
appropriate assumptions about causal ordering [87]).
Testing different parameters with the same data raises

issues of multiple comparisons (also known as

simultaneous inference). These issues are very complex
and controversial, with opinions about multiple-
comparison adjustment ranging from complete dismissal
of adjustments to demands for mindless, routine use,
and extend far beyond the present scope; see [88, 89] for
a recent commentary and review. We can only note here
that the devices we recommend can also be applied to ad-
justed comparisons; for example, the S-value computed
from an adjusted P-value becomes the information against
a hypothesis penalized (reduced) to account for
multiplicity.
We caution however against confusing the problem of

testing multiple parameters with the testing of multiple
values of the same parameter, as we recommend here:
Tests of the same parameter are logically dependent in a
manner eliminating the need for adjustment. This de-
pendency can be seen in how a P-value for HR ≤ 1 must
be less than the P-value for the less restrictive HR ≤ 2
(using a test derived from the same method and assump-
tions). Note also that a compatibility interval requires se-
lection of values based on multiple tests of the
parameter, namely the values for which p > α; this selec-
tion does not harm any frequency property of the inter-
val (e.g., coverage of the true parameter value at a rate 1
− α if all background assumptions are correct).

Conclusion
Ongoing misinterpretations of important medical research
demonstrate the need for simple reforms to traditional terms
and interpretations. As lamented elsewhere, [29, 39, 57, 90],
those traditions have led to overinterpretations and misinter-
pretations becoming standards of reporting in leading med-
ical journals, with ardent defense of such malpractice by
those invested in the traditions. Especially when there is
doubt about conventional assumptions, overconfident terms
like “significance,” “confidence,” and “severity” and decisive
interpretations should be replaced with more cautiously
graded unconditional descriptions such as “compatibility”;
narrowly compressed probabilities like P-values can be sup-
plemented with quantitative-information concepts like S-
values; and requests can be made for tables or graphs of P-
values and S-values for multiple alternative hypotheses, ra-
ther than forcing focus onto null hypotheses [31, 40, 61, 91].
These reforms need to be given a serious chance via editorial
encouragement in both review and instructions to authors.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12874-020-01105-9.

Additional file 1: Appendix. Technical details for computations of
figures and tables.

Additional file 2: Supplement. Technical issues in the interpretation of
S-values and their relation to other information measures.
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Additional file 3: Figure S1. Relative likelihoods for a range of hazard
ratios. A relative likelihood function that corresponds to Fig. 2, the P-
value function. Also plotted is the 1/6.83 likelihood interval (LI), which
corresponds to the 95% compatibility interval. Computed from results in
Brown et al. [34]. MLR = Maximum-Likelihood Ratio. HR = 1 represents no
association.

Additional file 4: Figure S2. Deviance statistics for a range of hazard
ratios. A deviance function, which corresponds to Fig. 3, the S-value
function. Also plotted is the likelihood interval (LI), which corresponds to
the 95% compatibility interval. Computed from results in Brown et al.
[34]. MLR = Maximum-Likelihood Ratio. HR = 1 represents no association.
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