

Etablierung und Validierung von durchsatzfähigen Methoden zur detaillierten Analyse von Allergenprofilen in Lebensmitteln und zur individuellen Charakterisierung deren allergener Wirkung in Patienten

Outcome and lessons learnt from the ALLERGEN-PRO project

ALLERGEN-PRO

Project title: Establishment and validation of throughput-capable methods for the detailed analysis of allergen profiles in foods and for the individual characterization of their allergenic effect in patients

Funder: Bundesministerium für Ernährung und Landwirtschaft

Call title: Promotion of innovations for solutions for the reduction and detection of allergens and intolerance-triggering substances in food, consumer goods and cosmetic products

Official duration: 3 years, from 1.9.2020 to 31.8.2023

Partners (other than BfR):

- Signatope GmbH, Reutlingen
- HOT Screen GmbH, Reutlingen
- Hochschule Albstadt-Sigmaringen
- Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen, Reutlingen
- Charité Universitätsmedizin, Berlin
- Société des Produits Nestlé, Vevey, Switzerland

ALLERGEN-PRO: goals of the project

Provide **improved analytical methods** (DNA and/or protein-based) for the reliable detection of allergenic components derived from **insects** in different food matrices. Improve the safety for allergy sufferers and food manufacturers through the development of i) a novel *in vitro* **detection system** of allergenic IgE / IgG epitopes, and ii) a new *in vitro* **diagnostic system** of antigen-specific reactions of immune cells from allergy sufferers to certain allergens.

Allergies to insects

Food allergies to insects and by-products

grasshoppers and locusts

lentil pest

cicadas

ant eggs

mealworms

silkworm pupae

Sago worms

Mopane worms

Bee larvae

cochineal red dye

honey

Reported allergic reactions after insect consumption

- silkworms
- mealworms
- cicadas
- lentil pest (Bruchus lentis)
- caterpillars
- cochineal red dye
- grasshoppers
- bee pupae, bee larvae and moths
- mopane worms (Gonimbrasia belina)
- sago worms (R. ferrugineus)
- ant eggs
- honey
- stink bugs
- psocids
- crickets

Cheng et al., 1987; Ji et al., 2008; Gautreau et al., 2017; Chomchai et al., 2020 *Freye, 1996; Beaumont et al., 2019 Piatt, 2005* Amentia et al., 2006 Inal et al., 2006; MacKinnon et al., 2015; Chomchai et al., 2020 Kotobuki et al., 2007 Jirapongsananuruk et al., 2007; Piromrat et al., 2008; Ji et al., 2009; Chomchai et al., 2020 *Ji et al., 2009 Okezie et al., 2010; Kung et al., 2011* Yew and Kok, 2012 Chansakulporn and Charoenying, 2012 *Vezir et al., 2014* Barennes et al., 2015 Bebaie and Vadas 2020 Chomchai et al., 2020; de las Marinas et al., 2021

ADOPTED: 5 October 2015 doi:10.2903/j.efsa.2015.4257

SCIENTIFIC OPINION

PUBLISHED: 8 October 2015

Risk profile related to production and consumption of insects as food and feed

EFSA Scientific Committee

The risk of allergies to insects in the case of insects as a source of food or feed proteins is **plausible**, and may be based on the existence of **common allergens** (pan-allergens) of arthropods such as arachnids, **crustaceans** (lobster, shrimp, crab), myriapods and insects. Similarly, allergens of **molluscs** and helminths are often very similar to those of insects and may lead to cross-allergies. The more or less close **phylogenetic relationships** between the different classes of arthropods may explain **sequence homologies** and similarities in structure constituting B cell epitopes in common allergens (pan-allergen), responsible for possible **cross allergy** between **edible insects** and other arthropods, **mites** (arachnids), **crustaceans** and non-edible insects (**cockroaches**). Insect consumption by individuals allergic to e.g. dust mites or shrimp could therefore well trigger allergic reactions associated with this **cross-reactivity**.

A taxonomic view

Elsevier Masson France

ScienceDirect www.sciencedirect.com

Disponible en ligne sur

EM consulte

Revue française d'allergologie xxx (2018) xxx–xxx Original article

Food allergen families common to different arthropods (mites, insects, crustaceans), mollusks and nematods: Cross-reactivity and potential cross-allergenicity

Les grandes familles d'allergènes communes aux arthropodes (acariens, insectes, crustacés), mollusques et nématodes : réactions croisées et allergies croisées

A. Barre, M. Simplicien, G. Cassan, H. Benoist, P. Rougé*

Most of these pan-allergens exhibit quite well conserved amino acid sequences and three-dimensional structures. **Insect tropomyosins** are closely related to **mite and crustacean**, whereas the mollusk tropomyosin group deviates from all. **Alpha-amylase and arginine kinase** groups of **insects and crustaceans** remain closely related but are much more distant from the corresponding groups of mite, mollusk and nematods.

α-amylase

European point prevalence of **food challenge-verified** allergy to shellfish 0.1% (CI 95% 0.0–0.2)¹

¹ Spolidoro, Ali, Amera, Nyassi, Lisik, Ioannidou, Rovner, Khaleva, Venter, van Ree, Worm, Vlieg-Boerstra, Sheikh, Muraro, Roberts, Nwaru. Prevalence estimates of eight big food allergies in Europe: Updated systematic review and meta-analysis. Allergy 2023;00:1–57. M. Haftenberger · D. Laußmann · U. Ellert · M. Kalcklösch · U. Langen · M. Schlaud · R. Schmitz · M. Thamm Abteilung für Epidemiologie und Gesundheitsmonitoring, Robert Koch-Institut, Berlin

Prävalenz von Sensibilisierungen gegen Inhalations- und Nahrungsmittelallergene

Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1)

Across all age groups and both sexes, the frequency of sensitization to D. pt. (d1) was 15.9% (95% confidence interval [CI] 14.8–17.1) of the population. [...]. Approximately 11 million adults in Germany are sensitized to house dust mites¹.

¹Bergmann, Allergo J Int (2022) 31:279–283

Cross-reaction to shrimp allergens

15 individuals with shrimp allergy were included in a DBPCFC. Most had inhalant allergies to HDM (11 of 15) and pollen (11 of 15), and 9 patients had 1 or more other food allergies. 13 out of 15 had subjective (21.6 mg mealworm protein) or objective (216 mg) clinical symptoms

Patient	Sex (Male/ Female)	Age (years)	0.01 g (2,16 mg	g 0.1 g g) (21,6 mg)	1 g) (216 mg)	3 g (648 mg)	10 g (2,16 g)	30 g (6,48 g)	60 g (12,96 g)	Mealworm challenge Muller
Α	F	46							OA, S, GI	2
В	F	23					OA,S,R	OA,S,G	OA, S, GI,R	3
С	м	69				OA	OA		OA	0
D	м	45						S, GI		2
E	F	27			OA			OA	OA, S	1
F	м	19					S	GI		2
G	F	60				S			S	1
н	м	30							GI	2
1	м	27								Neg
J	F	47			S	S, R	S, GI,R			3
К	F	52								Neg
L	м	26							S, GI	2
м	м	34					OA	OA	OA	0
Ν	F	23				OA, S	OA	OA	OA, S	1
0	м	46		OA	OA		OA	OA,GI		2

LETTER TO THE EDITOR | VOLUME 137, ISSUE 4, P1261-1263, APRIL 2016 🛛 🗠 Download Full Issue

Majority of shrimp-allergic patients are allergic to mealworm

Henrike Broekman, MD * 🖾 • Kitty C. Verhoeckx, PhD * • Constance F. den Hartog Jager, BSc • ... Carla A. Bruijnzeel-Koomen, MD, PhD • Geert F. Houben, PhD • André C. Knulst, MD, PhD • Show all authors • Show footnotes

Published: March 01, 2016 • DOI: https://doi.org/10.1016/j.jaci.2016.01.005 • 🖲 Check for updates

Cumulative Dose of Mealworm Protein (mg)

Predicted log-logistic, log-probit and Weibull distribution models of allergic response to mealworm (expressed as cumulative mg mealworm protein) intake. The gray area represents the confidence band for the log-probit model¹.

¹Garino et al. Food and Chemical Toxicology 142 (2020) 111460.

Cross-reaction to HDM allergens

Contents lists available at ScienceDirect

Food Chemistry

journal homepage: www.elsevier.com/locate/foodchem

Influence of processing and *in vitro* digestion on the allergic cross-reactivity of three mealworm species

Sarah van Broekhoven^{a,*,1}, Shanna Bastiaan-Net^{b,1}, Nicolette W. de Jong^c, Harry J. Wichers^b

10 out of 11 sera of HDM allergic patients without clinical history of crustacean allergy showed *in vitro* medium to high response to several extracts of raw, lyophilized, boiled or fried mealworms

Disponible en ligne sur ScienceDirect www.sciencedirect.com Elsevier Masson France

www.em-consulte.com

Revue française d'allergologie 59 (2019) 389–393 Case report

Food-induced anaphylaxis to Tenebrio molitor and allergens implicated

Anaphylaxie alimentaire à Tenebrio molitor et allergènes en cause

P. Beaumont^{a,b,*}, J. Courtois^{c,d}, X. Van der Brempt^{a,e}, S. Tollenaere^c

A man without food allergy, and whose history consisted solely of HDM allergy, had severe food anaphylaxis after eating cooked mealworm (*Tenebrio molitor*) larvae

Primary sensitization vs cross-reactivity

ATTUILLI

Insect primary sensitization

Four Dutch mealworms farmers were sensitized to **mealworm**, confirmed by skin prick test (SPT), immunoblot and basophil activation test (BAT). Only one patient had an allergy to **house dust mites** (HDM). They underwent a double blind placebo controlled food challenge (DBPCFC) with **mealworm snacks and shrimps**. 2/4 subjects (50%) reported a history of food allergic symptoms to mealworm, which was confirmed in the DBPCFC, starting at a dose of 0.1 g of mealworm. **None of the subjects reacted to shrimp**. Mealworm exposure is a **risk** for developing food allergy to mealworm

Volume 140, Issue 2, August 2017, Pages 600-603.e7
ELSEVIER
Letter to the Editor

Journal of Allergy and Clinical Immunology

Primary respiratory and food allergy to mealworm

<u>Henrike C.H.P. Broekman MD</u>^{a d} ⊠, <u>André C. Knulst MD, PhD</u>^{a d}, <u>Constance F. den Hartog Jager BSc</u>^{a d}, <u>Jolanda H.M. van Bilsen PhD</u>^{b d}, <u>Florine M.L. Raymakers RN</u>^a, <u>Astrid G. Kruizinga PhD</u>^{b d}, <u>Marco Gaspari PhD</u>^c, <u>Caterine Gabriele PhD</u>^c, <u>Carla A.F.M. Bruijnzeel-Koomen MD, PhD</u>^{a d}, <u>Geert F. Houben PhD</u>^{a b d}, <u>Kitty C.M. Verhoeckx PhD</u>^{a b d}

Exposure to larvae of *Tenebrio molitor* can lead to sensitization and subsequent development of allergic symptoms after ingestion of mealworms

Novel food applications submitted to EFSA

Question Number	Subject	Status	Last Updated	Reception Date	Applicant	Country	RA deadline
EFSA-Q-2023-00375	Dafatted Whole Cricket Powder (NF-2023-15560)	Intake	26/10/2023	30/5/2023	CRICKET ONE CO., LTD	Vietnam	
EFSA-Q-2023-00703	Application for authorisation of Dried defatted powder of Hermetia	Intake	25/10/2023	24/10/2023	InnovaFeed	France	
EFSA-Q-2023-00374	Acheta domesticus (house cricket) spray-dried powder (NF-2022-5951)	Intake	13/10/2023	30/5/2023	Alia Insect Farm società agricola	Italy	
EFSA-Q-2022-00534	Vitamin D3 containing UV-treated mealworm oil (NF-2021-0039)	Ongoing Risk Assessment	16/10/2023	29/8/2022	Nutriearth	France	11/7/2024
EFSA-Q-2021-00105	Request for a scientific opinion on Protein-rich flour from fresh larvae of mealworn (Tenebrio molitor) as a novel food (NF 2020/1959)	Ongoing Risk Assessment	28/8/2023	24/2/2021	Ynsect NL B.V.	France	2/9/2023
EFSA-Q-2021-00262	Request for a scientific opinion of Acheta domesticus Four as a novel food (NF 2020/1860)	Ongoing Risk Assessment	25/9/2024	11/5/2021	Italian Cricket Farm S.r.I	Italy	22/2/2024
EFSA-Q-2019-00690	Request for a scientific opinion on Protein powders from the Alphitobius diaperinus larva as a novel food (NF 2019/1292)	Ongoing Risk Assessment	29/9/2023	30/10/2019	Protifarm Holding N.V.	Netherlands	13/12/2023
EFSA-Q-2019-00589	Request for a scientific opinion on defatted whole crick t (Acheta domesticus) powder as a novel food (NF 2019/1227)	Finished and approved	13/5/2022	10/9/2019	CRICKET ONE CO., LTD	Vietnam	
EFSA-Q-2019-00748	Request for a coentine opinion on UV-treated powder of whole yellow mealworm (Tenebrio molitor) I rvae (NF 2019/1142)	Published	19/7/2023	21/11/2019	Nutriearth	France	
EFSA-Q-2019-00121	Request for a scientific opinion on Whole and ground cricke's (Acheta domesticus) as a novel food (NF 2018/0804)	Finished and approved	7/7/2021	27/2/2019	Fair Insects BV (A Protix Company)	Netherlands	
EFSA-Q-2019-00115	Request for a scientific opinion on Whole and ground Grasshoppers (Locusta migratoria) as a novel food (NF 2018/0803)	Finished and approved	25/5/2021	22/2/2019	Fair Insects BV (A Protix Company)	Netherlands	
EFSA-Q-2019-00101	(Tenebrio molitor) arvae as a novel food (Nr 2019/0802)	Finished and approved	7/7/2021	15/2/2019	Fair Insects BV (A Protix Company)	Netherlands	
EFSA-Q-2019-00046	Request for a scientific opinion of Hermetia illucens r eal as a novel food (NF 2018/0765)	Ongoing Risk Assessment	29/3/2022	28/1/2019	Enorm Biofactory A/S	Denmark	27/9/2023
EFSA-Q-2019-00201	Request for a scientific opinion on Apis mellifera male pupae as a novel food (NF 2018/0754)	Ongoing Risk Assessment	22/9/2023	22/3/2019	The Finnish Beekeepers' Association	Finland	11/1/2024
EFSA-Q-2020-00748	Request for a scientific opinion on Dried Acheta domesticus a novel food (NF 2018/0623)	Intake	7/5/2021	17/11/2020	National Bureau of Agricultural Commodity and Food Standards, Ministry of Agriculture and Cooperatives	Thailand	
EFSA-Q-2018-00746	Request for a scientific opinion on mealworn (Tenebrio molitor) as a novel food (NF 2018/0396)	Ongoing Risk Assessment	16/10/2023	28/9/2018	Belgium Insect Industry Federation (BiiF)	Belgium	29/3/2024
EFSA-Q-2018-00513	Request for a scientific opinion on Locusta migratoria as a novel food (NF 2018/0395)	Intake	7/5/2021	20/6/2018	Belgian Insect Industry Federation (BiiF)	Belgium	
EFSA-Q-2018-00263	Request for a scientific opinion on dried crickets (Gryllodes sigillatus) s a novel food (NF 2018/0260)	Withdrawn	22/4/2022	21/3/2018	SAS EAP Group - Micronutris	France	
EFSA-Q-2018-00262	Request for a scientific opinion on dried mealworm. (Tenebrio molitor) as a novel food (NF 2018/0241)	Finished and approved		21/3/2018	SAS EAP Group - Micronutris	France	
EFSA-Q-2018-00543	Request for a scientific opinion or Acheta domesticus is a novel food (NF 2018/0128)	Ongoing Risk Assessment	28/8/2023	3/7/2018	Belgian Insect Industry Federation (BiiF)	Belgium	17/4/2024
EFSA-Q-2018-00282	Request for a scientific opinion on whole and grinded lesser mealworm (Alphitobius diaperinus) arvae products as a novel food (NF 2018/0125)	Finished and approved	4/7/2022	10/4/2018	Ynsect NL B.V.	Netherlands	

ALLERGEN-PRO

Work packages BfR NMI SIG Nestlé						Jahi	r 1								Jah	r 2									Jah	r 3				
HSAS HOT CHA		1	2	3 4	4 5	6	7 8	89	10	11 1	2 1	3 14 1	15 1	16 17	18	19	20 2	21 2	2 23	24	25	26 2	7 28	29	30	31 3	32 33	34	35 3	6
Koordination (BfR)		¥	I	ļ		+ +	ļ	Ī	-	-			+	+	+					i	+	+	+	-	T				1	>
1. Referenz- und Probenmaterial																														
1.1 Probensammlung (BfR, HSAS)							\triangleleft	1.1																						
1.2 Allergenfraktionierung für AP2 und AP5 (HSAS)												1.2																		
1.3 Herstellung prozessierter Lebensmittel (BfR, HSAS)													V	1.	3															
1.4 In vitro-Verdau von Lebensmitteln (BfR)																			1.4	<u> </u>										
1.5 Matktnahe Produkte mit Insektenproteinen (Nestlé)																														
2. Entwicklung und Validierung MS und LFA																														
2.1 Bioinformatische Sequenzanalysen (SIG)							\triangleleft	2.1																						
2.2 MS Charakterisierung der reinen Allergene aus AP1.2 (SIG)																											22			
2.3 Methodenentwicklung MS (SIG)																														
2.4 Methodenentwicklung LFA (SIG)																										\triangleleft	2.3			
2.5 Testung prozessierter Proben/Matrixeinfluss (SIG)																														
2.6 Methodentransfer IPMS (SIG, HSAS)																														
3. Entwicklung und Validierung PCR																														
3.1 Methodentwicklung PCR (BfR)																					V	3.1								
3.2 Testung prozessierter Proben/Matrixeinfluss (BfR, HSAS, Nestlé)																														
3.3 Validierung PCR-Methode Ringversuch (BfR)																														3.
4. In vitro-Diagnostik - IgE Bindeprofile																														
4.1 Generierung von Allergen-Beads (HSAS, NMI)												4.1																		
4.2 Bestimmung von IgE/IgG Bindeprofilen (HSAS, NMI)																\triangleleft	4.2													
4.3 ESI-MSMS Analyse allergener DigiWest Fraktionen (HSAS, SIG)																														
4.4 Reverse Allergen DigiWest IgE/IgG Bindeprofile (HSAS, NMI)																										\leq	4.3			
4.5 Analyse von Patientenproben der Charité aus AP6 (HSAS, NMI)																														
5. In vitro-Diagnostik - Gesamtblut Analysesystem																														
5.1 Vorbereitung Allergene für Zellkultur-Tests (HOT)																			V	5.1						1				
5.2 Optimierung TruCulture für Referenzallergene (HOT)																					J			V	5.2					
5.3 Optimierung TruCulture für Insekten (HOT)																										1				5.3
5.4 Entwicklung ultrasensitivier Cytokintests (HOT)																														5.4
5.5 Klinischer Nachweis DBPCFC und TruCulture (HOT, CHA)																												•		5 5.6
6. Klinische Relevanz von Insektenallergenen																													T	
6.1 Patientenbefragungen Prick-& orale Provokationstests (CHA)																						1								
6.2 Sammlung Patientenproben für AP4 und AP5				_	_		_	_													~									
7. Informationsbereitstellung								T																						7
7.1 Publikationen in Fachzeitschriften (alle)																←	-	╡	- +	+ -	┝┝	- -	-	-		-		┿┿	- +:	> _
7.2 Öffentlicher Workshop zum Projektende (BfR)																														7.1

Legende und Abkürzungen:

BfR NMI SIG

Balkenfarbe = Hauptanteil des Verbundpartners am Arbeitspaket

- BfR Bundesinstitut für Risikobewertung
- NMI Naturwissenschaftliches und Medizinisches Institut
- SIG Signatope
- HSAS Hochschule Albstadt-Sigmaringen
- HOT Hot Screen
- CHA Charité

WP 1 Provision of reference and sample material

Main activities: sample procurement, allergen fractionation, production of processed foods, *in vitro* digestion

Experimental cookies:

- 3 levels of incurrence: 100 ppm, 20 ppm, 5 ppm ٠
- 3 baking protocols: 180°C, 10' 180°C, 20' 210°C, 10' ٠

Experimental canned meat:

- 3 levels of incurrence: 100 ppm, 20 ppm, 5 ppm
- 3 cooking protocols: 70-80°C (pasteurization), ~100°C (cooking), 121°C

(autoclaving).

WP 1.4. *In vitro* digestion of food. 10 different food samples containing different amounts of *Tenebrio molitor* (0-47%) underwent in vitro digestion following the INFOGEST 2.0 protocol. Aliquots from each digestion step, as well as non-digested, were distributed to the Partners involved in the follow up analyses

2 model foods

WP 2 Development and validation of mass spectrometry-based immunoassays and a peptide-centric lateral flow assay

Participants: Y SIGNATOPE

Main activities: MS method development, LFA method development, method transfer

Species	UniProtKB # entries (NOV-2021)	# proteins found in this study
T. molitor	634	1,150
A. diaperinus	47	440
G. sigillatus	37	360
H. illucens	17,599	2,051
A. domesticus	159	450
L. migratoria	1,559	600

WP 3 Development and validation of DNA-based methods

Main activities: Method development, method validation

			Single copy gene, declared LOD 10 pg, unable to detect low ppm levels in processed foods
	Tenebrio molitor	Debode et al. 2017, Food Additives & Contaminants: Part A Köppel et al. 2019, European Food Research and Technology	 Multicopy gene, performance under evaluation in processed foods
-	Locusta migratoria	Köppel et al. 2019, European Food Research and Technology	 Multicopy gene, performant but not robust when used at 60°C
- And	Gryllodes sigillatus	New method developed! (paper in preparation) based on Daniso et al. 2020, European Food Research and Technology	Multicopy gene, performance at low ppm levels under evaluation in processed foods
	Hermetia illucens	Zagon et al. 2018, Food Control	Multicopy gene, good performances at low ppm levels (20 ppm) in processed foods
	Acheta domesticus	Garino et al. 2021, Animal Feed Science and Technology	Multicopy gene, good performances at low ppm levels (20 ppm) in processed foods
	Alphitobius diaperinus	New method developed! Garino et al. 2022, Food Control	Multicopy gene, good performances at low ppm levels (20 ppm) in processed foods

WP 3 Development and validation of DNA-based methods

Participants:

Nestle

Hochschule Albstadt-Sigmaringen Results presented at the Food Allergy Forum 2023

Main activities: Method development, method validation

Ŋ	/(SYSTEMS]
		description	insect declared	A.diaperinus	T.molitor	H.illucens	A.domesticus	G.sigillatus	L.migratoria	IC*	AC	
		Protein bar 'SENS'	A.domesticus	+	-	+	+	-	-	+	+	
		Protein bar 'SENS'	A.domesticus	-	-	-	+	-	-	+	+	
	L	Protein bar 'Jiminis'	A.domesticus	+	-	-	+	-	-	+	+	
		Insect burger 'BugFoundation'	A. diaperinus	+	-	+	+	-	-	+	+	usta migratoria
		Pasta 'Plumento Foods'	A. diaperinus	+	-	-	+	-	+	+	+	ista migratoria
		Protein bar 'Isaac Nutrition'	A. diaperinus	+	-	-	-	-	-	+	+	itobius diaperir
6	6	Crunchy Müsli 'Entomos'	T. molitor	-	+	-	-	-	-	+	+	
	`	Tortillas 'Entomos'	T. molitor	-	+	-	-	-	-	+	+	ebrio mollitor
		Crispies 'Entomos'	T. molitor	-	+	-	+	-	-	+	+	
/		Protein bar 'Insectafood'	crickets and T.molitor	+	+	-	+	-	-	+	+	lodes sigillatus
	н	Burger 'Essento'	T. molitor	-	+	-	-	-	-	+	+	
		Cookies 'Entomos'	A. domesticus	-	-	-	+	-	+	+	+	netia illucens
		Baking flour 'Cricket Flours'	Gryllodes sigillatus	+	-	-	-	+	-	+	+	sta domostiour
		Pancake & Waffle mix 'Cricket Flours'	Gryllodes sigillatus	+	-	-	-	+	-	+	+	eta domesticus
		cookies 'Pavesi'		-	-	-	-	-	-	+	+	vition control (r
·	Α	pasta 'La Molisana'		-	-	-	-	-	-	+	+	
	· ·	chicken burger		-	-	-	-	-	-	+	+	lification control
		müsli 'Dr. Oetker'		-	-	-	-	-	-	+	+	
		protein bar 'Veganz'		-	-	-	-	-	-	+	+	emplate contro
		Toortillas chips 'Bio Zentrale'		-	-	_	_	_	_	+	+	tive control

^{*Ai*} *+ means absence of inhibition, Ct values around 27

WP 4 In vitro diagnostics: new platform for detection of IgE binding profiles

Main activities: Generation of allergen beads, analysis of allergenic DigiWest fractions, analyses of patient samples

WP 5 In vitro diagnostics: innovative whole blood analysis system for food allergies

Participants: HOT Screen 💽 NMI 🐪 🕥 SIGNATOPE CHARITÉ

Main activities: Preparation of allergens for cell culture tests, optimization TrueCulture® system, clinical evidence of allergenic effects in whole blood

House dust mite allergens:

- Bad availability & immune response of donors with HDM
- High concentrations (µg/mL) of allergens needed
- Poor quality and high costs (250 μg; 700 Euro)

Peanut allergen:

- No detectable cytokine release
- Lacking of suitable donors
- Several donor recruitment approaches were unsuccessful

Both approaches were so far unsuccessful

WP 6 Assessing clinical relevance of insects as potential food allergens (in vivo testing)

Participants: (C)

Main activities: Collection of patient samples, in vivo assessment of the clinical relevance of insects

- Out of the 26 who performed the SPT, 2 (sensitized to HDM) showed sensitization to buffalo worm, 1 (sensitized to HDM and shellfish) showed sensitization to locust and cricket, and 1 (sensitized to peanut/hen's egg and HDM) showed sensitization to mealworm.
- No one accepted to undergo 'open food challenge' (OFC).
- Sera from 100 house dust mite sensitized patients will be analysed regarding sIgE to mealworm and eventually other edible insects with the ImmunoCAP

Questionnaires (n=1) and blood sample (n=1), but skin prick test not

possible (n=2)

Danke für Ihre Aufmerksamkeit

Bundesinstitut für Risikobewertung Max-Dohrn-Straße 8-10 • 10589 Berlin Telefon 030 - 184 12 - 0 • Fax 030 - 184 12 – 99 0 99 bfr@bfr.bund.de • www.bfr.bund.de

