Airborne virus exposure mitigation: advancing RPE testing with a fluorescent tracer

Wednesday, 20 March 2024

Kirsten Lassing MSc Radboud University, Nijmegen, The Netherlands

ISES Europe Workshop 2024
O9: Exposure at school and public spaces

ADVANCING RPE TESTING WITH A FLUORESCENT TRACER INTRODUCTION

- The COVID-19 pandemic revealed gaps in understanding airborne virus transmission
- Current European standards (EN149:2001 + A1:2009) do not cover exposure to viruses
- Understanding of the role of aerosols may lead to more effective mitigation strategies

MItigation STrategies for Airborne Infection Control (MIST) By the Dutch Research Council (NWO)

Source: Božič & Kanduč, 2021

ADVANCING RPE TESTING WITH A FLUORESCENT TRACER INTRODUCTION

- Aerosols (< 5 µm) carry viruses over distances greater than 1.5 m (6 ft)
- The influence of environmental conditions on infection risk

 Exploring the presence, transmission, and dynamics of aerosols as carriers of viruses

Source: Galbadage et al., 2020

ADVANCING RPE TESTING WITH A FLUORESCENT TRACER INTRODUCTION

Respiratory Protective Equipment (RPE)

- Specifically face masks (e.g., FFP2 respirators or surgical masks)
- Dispersion (shedding) of expelled droplets at home, on the workplace or in public space such as public transportation and schools
- Estimation of the virus load of water droplets
- Viral load of body fluids (e.g., in 'super spreaders')
- Threshold of infection
 - Depending on host factors
- Face mask fit and filtration performance testing of different types of face mask designs

Source: Prather et al., 2020

ADVANCING RPE TESTING WITH A FLUORESCENT TRACER PREVIOUS RESULTS

Total Inward Leakage (TIL) is defined as the combination of

- Face seal leakage
- Penetration through the filter

TIL has already been investigated in previous research

- 17.7% lower TIL in surgical masks at 30 cm
- 21.7% lower TIL in surgical masks at 60 cm

Article

Comparative Performance Testing of Respirator versus Surgical Mask Using a Water Droplet Spray Model

Paul T. J. Scheepers ^{1,*,†}, Heiman F. L. Wertheim ^{2,3,†}, Maurice van Dael ¹, Rob Anzion ¹, Henk Jan Holterman ⁴, Steven Teerenstra ⁵, Martijn de Groot ⁶, Andreas Voss ^{2,3,7} and Joost Hopman ^{2,3}

Henk Jan Holterman *10, Steven Teerenstra 3, Martijn de Groot *10, Andreas Voss 2,3,7 10 and Joo

Source: Scheepers et al., 2021

- **RPE testing** based on the use of fluorescein, a fluorescent tracer
 - Tracer-calibrated performance testing does not require Biological Safety Laboratory (BSL)
- The sum of filter penetration and face seal leakage was assessed
- Recovery of the fluorescein tracer on a membrane filter was determined

- Generation of inhalable droplets by the Pulmospray® nebulizer from MedSpray®
 - Particle size ranging from 6.5 to 14.8 μm

IUPAC name: Disodium;3-oxospiro[2-benzofuran-1,9'-xanthene]-3',6'-

diolate

Molecular formula: $C_{20}H_{10}Na_2O_5$

CAS: 518-47-8

Molecular weight: 376.3 g/mol

Water solubility: Approximately 100 mg/mL at 20°C

Vapor pressure: Negligible

Use: Diagnostic aid in corneal injuries and corneal trauma

Approved for use in externally applied drugs and

cosmetics

Fluorescence: Excitation 498 nm and emission 517 nm

Note: Fluorescein can be visualized when in water solution

(dried fluorescein is not fluorescent)

- Compare several face masks with the Sheffield dummy head
 - Nebulizing fluorescein at 10 cm
 - Detecting fluorescein in samples with a plate reader

Sheffield dummy head: *EN 149:2001 standard*

- TIL of FFP2 respirators (N=3) vs. surgical masks (N=7) tested at close range (10 cm)
 - 57.4% higher leakage in surgical masks compared to FFP2 respirators
 - Overall efficiency of 97.3 and 98.3%

ADVANCING RPE TESTING WITH A FLUORESCENT TRACER DISCUSSION AND CONCLUSION

- We observed a 58% higher TIL in surgical masks compared to FFP2 masks
- Preliminary research showed that surgical masks had a 17.7% lower TIL compared to FFP2 face mask at 30 cm distance and 21.7% lower at 60 cm
 - Studies differ in distance to the source and the droplet size distribution
- The use of a fluorescent tracer may be considered as a new approach to test RPE for virus protection efficacy

Source: Scheepers et al., 2021

ADVANCING RPE TESTING WITH A FLUORESCENT TRACER FUTURE RESEARCH

- Performing TIL tests at larger distances to the source, in a new refined measurement set-up with increased reproducibility
- Drafting the study proposal for the human volunteer study
 - Study person-to-person variability due to face-seal leakage

Source: Carbon, 2020

ADVANCING RPE TESTING WITH A FLUORESCENT TRACER FUTURE RESEARCH

- Set-up for face mask leak testing in human volunteers
 - Development of a risk assessment approach to the infection risk in populations using developed methodology in chemical risk assessment

Total inward leakage study

- Virus load can be studied using fluorescent tracer (no BSL needed)
- Filtration efficiency and face seal leakage of face masks depend on
 - Particle size distribution of the water droplet spray
 - Distance from the source
- Next steps
 - Calibrate fluorescein tracer concentration with SARS-CoV-2 virus load
 - Study shedding by humans breathing, talking, coughing, etc.
 - Move from Sheffield head to testing face masks on human volunteers
 - Study face seal leakage dependent on facial biometrics and growing a beard

ACKNOWLEDGMENTS

Radboud University

- Paul Scheepers
- Nayandra Verzaal
- Martien Graumans
- Nina Wieland

Radboudumc

Heiman Wertheim

Wageningen University & Research

Henk Jan Holterman

MIST consortium

Thank you for your attention!

Questions?

