Aggregate exposure assessment for PFAS using environmental data and human biomonitoring

Partnership for the Assessment of the Risks from Chemicals

Arno Vanderbeke, Mirja Van Holderbeke, Kaatje Touchant, Katleen De Brouwere, Ann Colles

Berlin, 21 March 2024

Study overview

Soil contamination rediscovery in 2019 accelerates PFAS action plan

- Around the 3M factory in Zwijndrecht Belgium
- In 2021, temporary no-regret measures were announced
- New environmental and human biomonitoring study started

3°E

3M comments on pollution scandal: 'We will accept our responsibilities'

Tuesday, 29 June 20 By Lauren Walker

The Brussels Times' article, 29/06/2021

Sampling area around the 3M factory (black dot ●) in Zwijndrecht, Belgium

Research questions

Human biomonitoring

To what extent have adolescents around 3M been exposed to PFAS?

→ Information on the level of PFAS in the bodies of adolescents around 3M What does this exposure do to adolescents' bodies?

→ Information on health outcomes of adolescents around 3M

Environmental sampling

How do PFAS enter the body?

→ Information on the relative importance of different exposure routes for the adolescents

Human biomonitoring and environmental study

- n = 303 adolescents (12-17y, 155 \bigcirc), 148 \bigcirc) from <5 km from 51°16′N the plant, living there for >5y
- Subdivided into 6 clusters based on municipality
- Blood and environmental samples collected and analyzed for 21 PFAS compounds

6 spatial clusters of the participants (**A**) and the dominant wind direction in the area (**B**)

Samples and information collected

- Human samples
 - Blood/serum from 301 participants
- Environmental samples

Rainwater

Soil vegetable garden / chicken coop / greenhouse n = 62/38/10

Compost

Eggs

Vegetables / fruit / nuts

n = 61

Potato, n = 3Leafy v., n = 8Stem v., n = 17Root v., n = 6Bulbous v., n = 5Cabbages, n = 6Legumes, n = 6Small fruit, n = 29Tree fruit, n = 33Nuts, n = 6

- Other information:
 - Length, weight, abdominal- and waist circumference, blood pressure
 - Questionnaires
 - Geographic information

Modelling

External and internal exposure

Modelling workflow

- Model external exposure using S-Risk* model
 - Based on measured levels in soil, house dust, vegetables and eggs; as well as levels in commercial food

- Model internal exposure using MERLIN-Expo** model
 - Based on modelled external exposure
 - Comparison with measured serum levels
- Focus on oral exposure

- Scenario-based, per spatial cluster* (using geometric means)
 - Local egg consumption either 2/week for adolescents (current for areas without known pollution) or 4/week**

Routes of exposure → Scenario ↓	Soil	House dust	Local vegetables	Local eggs	Commercial food background	Drinking water
Ornamental garden	√	√	×	×	✓	✓
Vegetable garden	√	√	✓	×	✓	√
Chicken coop	√	√	×	✓	√	√
Vegetable garden + chicken coop	√	✓	✓	✓	✓	✓

- Number of scenarios per cluster based on available environmental measurements
- Selected compounds
 - EFSA 4*: PFOS_{total}, PFOA_{total}, PFHxS_{total} and PFNA
 - 2 additional PFAS associated with eggs and vegetables: PFBA and PFDA

- Age group 6-15 years
- Consumption of local vegetables and/or eggs → oral exposure > EFSA 2020 TWI
- Local eggs >
 local vegetables >
 background commercial
 food >
 soil, dust and drinking
 water
- Despite high levels in dust, oral exposure is limited due to low intake

- PFOS_{total} dominates oral exposure through consumption of local eggs(_), even though production stopped in 2002*,**
- PFNA has lowest contribution
- PFHxS_{total} becomes important when local vegetables (■) are considered, as well as PFBA and PFDA

*EPA and 3M announce phase out of PFOS (2000), https://www.epa.gov/archive/epapages/newsroom_archive/; **they did keep discarding contaminated water, https://www.vrt.be/vrtnws/nl/2021/07/05/3m-loosde-grote-hoeveelheden-pfos-in-de-schelde

- Input for the PBK model from MERLIN-Expo is the output of S-Risk
- Modelling over entire lifetime: external exposure calculated per age group; environmental levels assumed constant
- Only for PFOS_{total} and PFOA_{total}: model parameter values only available for those 2 compounds*
- PBK model output at age 15 compared to the average adolescent serum values (± 95% CI) per spatial cluster

Modelling workflow — internal exposure PFOS_{total}

- Predicted serum concentrations
 measured serum
 concentrations
- Impact of eggs > vegetable garden, same as for external exposure
- Average values per spatial cluster, no individual calculations (for now)

Modelling workflow — internal exposure PFOA_{total}

- Predicted serum concentrations
 measured serum
 concentrations
- Serum levels less variable than for PFOS_{total}
- Impact of vegetable garden larger than for PFOS_{total}
- Average values per spatial cluster, no individual calculations (for now)

Conclusion

- Limited number of environmental samples in certain spatial clusters → high uncertainty on exposure route attribution
- The general no-regret measures (limit local egg and vegetable intake) still hold
 - Background from commercial food is already close to EFSA TWI for the EFSA 4 compounds
- Working with averages per spatial cluster provides insight for measures per cluster
- Working with averages discards a lot of the information of individual measurements → ongoing work

Contact & acknowledgments

Arno Vanderbeke

arno.vanderbeke@vito.be

linkedin.com/in/arnovanderbeke

orcid.org/0000-0002-7240-8377

Study commissioned by the Flemish government:

Study consortium:

Study promotors:

- Prof. Dr. Ilse Loots
- Dries Coertjens
- Ann Colles
- Drs. Eva Govarts
- Dr. Vera Nelen
- Prof. Dr. Greet Schoeters
- Prof. Dr. Lieven Bervoets
- Dr. Thimo Groffen
- Jodie Buytaert
- Robin Lasters
- Prof. Dr. Marcel Eens
- Dr. Liesbeth Bruckers
- Prof. Dr. Martine Leermakers
- Em. Prof. Dr. Nicolas Vanlarebeke

Modelling workflow — internal exposure PFOS_{total} — possible reasons underestimation of the model

- Exposure through consumer products (cosmetics, cookware, PFAS sprays,...) and breastfeeding not considered in the model
- Possible underestimation of exposure through drinking water:
 - Considered part of the 'background' exposure from EFSA, uses a lower bound level of 0.61 ng/L for PFOS
 - Levels can vary between 0.5-1 ng/L up until 10 ng/L → analysis of drinking water recommended
- PFOS is a breakdown product of several precursors, which are not considered
- Some clusters: scenarios calculated with limited exposure, but some participants likely do eat home-grown vegetables and/or eggs

