

Attachment of Listeria monocytogenes to corn salad

Tim Hoffmann

19th Conference of Food Microbiology

Berlin

April 2nd, 2025

Importance of Listeria monocytogenes

- Gram-positive, rod-shaped
- Psychrophilic ⇒ Food-borne pathogen
- Intracellular parasite
- Gastroenteritis, encephalitis, meningitis
- YOPI are potential risk group
- High hospitalization and mortality rate
- Meat, fish, diary, (leafy) vegetables

-> SEM to visualize colonization

-> Tagging of *L. monocytogenes* to study spacial and temporal dimensions of colonization *via* LSM -> Investigation of *L. monocytogenes* under static conditions forming biofilm

Aim of this study

In what way does *L. monocytogenes* interact with corn salad and where?

Strains under investigation:

L. monocytogenes NCTC 10887 serovar 1/2a from chinchilla *L. monocytogenes* 15-L-06447-1-1 serovar 4b from mung bean sprouts L. monocytogenes 20-L-06460-1-1 serovar 1/2a from RTE salad

Fig. 2: Sterile cultivated corn salad

SEM of L. monocytogenes colonizing sterile corn salad

Contamination of sterile *V. locusta* with *L. monocytogenes* NCTC 10887 (5 μ l, OD₆₀₀ = 2.0) Incubation 48 h, 22 °C

- Fixation with2.5 % glutaraldehyde
- Dehydration with EtOH
- Crit. point drying

Fig. 3: *L. monocytogenes* NCTC 10887 on sterile *V. locusta*, 48 h, 22 °C

Tagging of L. monocytogenes NCTC 10887

Screening for tagged L. monocytogenes NCTC 10887 cells

Fig. 6: *L. monocytogenes* NCTC 10887 wildtype

Fig. 7: *L. monocytogenes* NCTC 10887 pAD1::phyper::mCherry

Attachment of *L. monocytogenes* NCTC 10887 pAD1::phyper::GFP to corn salad

- 1. Single cells
- 2. Layer formation
- 3. Stoma colonization

Fig. 8: *L. monocytogenes* NCTC 10887 pAD1::phyper::GFP incubated on corn salad, 22°C, 48 h

L. monocytogenes NCTC 10887 growth in different media BHI — LB — SM 0,6 Corn salad medium (SM): 0,5 0,4 M9 - salt solution 200 ml 00900 0,3 **Corn salad extract** 250 ml 0,2 H₂O ad 1000 ml 0,1 0 0 10 20 30 40 50 60 Fornfeld et al. (2017) Time [h] Fig. 9: Growth of *L. monocytogenes* NCTC 10887, 8

static conditions, 22 °C

Crystal – violet assays for biofilm quantification

Fig. 10: CV-Assays for different L. monocytogenes strains at ambient temperature (22 °C)

Biofilm formation of *L. monocytogenes* NCTC 10887 pAD1::phyper::mCherry

- Quantification with ,BiofilmQ
- Three biological replicates averaged
- 1D histogramm of ce leave plotted against biofilm height 20 μm

Conclusion and outlook

SEM and LSM imaging shows *L. monocytogenes* is able to colonize *V. locusta*, produces structures within the stomata.

CV-Assays/LSM imaging shows most biofilm is formed in LB-broth at 22 °C during the first 24 h of incubation.

Differences in biofilm architecture, dependend on the incubation media. Most cells in first layers.

Outlook:

- Transcriptomic data and reporter fusions
- Create a time series via LSM

Contact

Special thanks to:

Institute Pasteur

Dr. Anselm Lehmacher

Elke Wölken

Lea Höhling

Weiß Lab

Tim Hoffmann Universität Hamburg HSFS Lebensmittelmikrobiologie Ohnhorstraße 18 22609 Hamburg

+49 40 42816-645 tim.hoffmann@uni-hamburg.de

12

Sources:

- Fig 1: Osek J, Wieczorek K. Listeria monocytogenes-How This Pathogen Uses Its Virulence Mechanisms to Infect the Hosts. Pathogens. 2022 Dec 7;11(12):1491. doi: 10.3390/pathogens11121491. PMID: 36558825; PMCID: PMC9783847.
- Fig 2: Source: Blattgemüse Weltweit, Deutschland. (n.d.). Zugriff am 23. April 2024, vo: https://de.statista.com/outlook/cmo/lebensmittel/gemuese/frischesgemuese/blattgemuese/custom?currency=EUR&locale=de&token=pihJ63N0Y35pkGFRbYvphxrl0EmFzok6tYcw8ylejWbeEWoyv2d7H0QbW7wij3IJ81AM0Q85WNzD NEi6EHb0ZRTQMhewDa1yQ-33zw%3D%3D
- Fig 5: Balestrino D, Hamon MA, Dortet L, Nahori MA, Pizarro-Cerda J, Alignani D, Dussurget O, Cossart P, Toledo-Arana A. Single-cell techniques using chromosomally tagged fluorescent bacteria to study Listeria monocytogenes infection processes. Appl Environ Microbiol. 2010 Jun;76(11):3625-36. doi: 10.1128/AEM.02612-09. Epub 2010 Apr 2. PMID: 20363781; PMCID: PMC2876438.
- Fig 6: Lauer P, Chow MY, Loessner MJ, Portnoy DA, Calendar R. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol. 2002 Aug;184(15):4177-86. doi: 10.1128/JB.184.15.4177-4186.2002. Erratum in: J Bacteriol. 2003 Feb;185(4):1484. PMID: 12107135; PMCID: PMC135211.

Crystal – violet assays for biofilm quantification

Fig. 10: CV-Assays for different L. monocytogenes strains at ambient and body temperature

Crystal – violet assays for biofilm quantification

Most biofilm formation:

- In LB medium
- During first 24 h
- Little to no formation in SM, BHI

Fig. 10: CV-Assays for different *L. monocytogenes* strains at body temperature (37 °C)

Table 1. Confirmed listeriosis cases and rates per 100 000 population by country and year, EU/EEA, 2018–2022

Country	2018		2019		2020		2021		2022	
	Number	Rate								
Austria	27	0.31	38	0.43	41	0.46	38	0.43	47	0.52
Belgium	74	0.81	66	0.72	54	0.59	68	0.74	87	0.94
Bulgaria	9	0.13	13	0.19	4	0.06	3	0.04	5	0.07
Croatia	4	0.10	6	0.15	5	0.12	8	0.20	5	0.13
Cyprus	1	0.12	1	0.11	2	0.23	1	0.11	1	0.11
Czechia	31	0.29	27	0.25	16	0.15	24	0.22	48	0.46
Denmark	49	0.85	61	1.05	43	0.74	62	1.06	86	1.46
Estonia	27	2.05	21	1.59	3	0.23	5	0.38	11	0.83
Finland	80	1.45	50	0.91	94	1.70	70	1.26	70	1.26
France	338	0.50	373	0.56	334	0.50	435	0.64	451	0.66
Germany	678	0.82	571	0.69	546	0.66	562	0.68	548	0.66
Greece	19	0.18	10	0.09	20	0.19	21	0.20	7	0.07
Hungary	24	0.25	39	0.40	32	0.33	35	0.36	64	0.66
Iceland	2	0.57	4	1.12	4	1.10	5	1.36	2	0.53
Ireland	21	0.43	17	0.35	6	0.12	14	0.28	17	0.34
Italy	178	0.29	202	0.34	155	0.26	230	0.39	345	0.58
Latvia	15	0.78	6	0.31	8	0.42	10	0.53	8	0.43
Liechtenstein	NDR	NRC	NDR	NRC	NDR	NRC	0	0.00	0	0.00
Lithuania	20	0.71	6	0.21	7	0.25	7	0.25	13	0.46
Luxembourg	5	0.83	3	0.49	4	0.64	4	0.63	4	0.62
Malta	1	0.21	5	1.01	5	0.97	0	0.00	1	0.19
Netherlands	69	0.40	103	0.60	90	0.52	86	0.49	94	0.53
Norway	24	0.45	27	0.51	37	0.69	20	0.37	30	0.55
Poland	128	0.34	121	0.32	57	0.15	120	0.32	142	0.38
Portugal	64	0.62	56	0.54	47	0.46	57	0.55	63	0.61
Romania	28	0.14	17	0.09	2	0.01	11	0.06	14	0.07
Slovakia	17	0.31	18	0.33	7	0.13	13	0.24	25	0.46
Slovenia	10	0.48	20	0.96	26	1.24	19	0.90	20	0.95
Spain	370	NRC	504	NRC	191	NRC	355	0.77	437	0.95
Sweden	89	0.88	113	1.10	88	0.85	107	1.03	125	1.20

European Centre for Disease Prevention and Control. Listeriosis. In: ECDC. Annual Epidemiological Report for 2022. Stockholm: ECDC; 2024.

18

Biofilm formation of L. monocytogenes NCTC 10887 pAD1::phyper::mCherry

- Quantification with "BiofilmQ"
- Three biological replicates averaged
- 1D histogramm of cell count plotted against biofilm height

Fig. 11: L. m. NCTC 10887, 48 h, 22 °C (A, B, C) and BiofilmQ quantification (D, E, F)

Biofilm formation of *L. monocytogenes* NCTC 10887

Fig. 11: L. monocytogenes NCTC 10887, 48 h, statical conditions, LSM imaging

21

20 µm