

Institute of Food Science and Biotechnology/Dept. of Food Microbiology and Hygiene

Selection and Characterization of Exopolysaccharide Producing Lactic Acid Bacteria for the Stabilization of Fruit Preparations

Dor Zipori

Stabilization of Fruit Preparations – Microbes instead of Chemicals?

Intermediate products in the food industry

Uniform distribution of fruit pieces \rightarrow use of additives in form of **hydrocolloids**

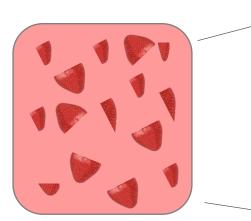
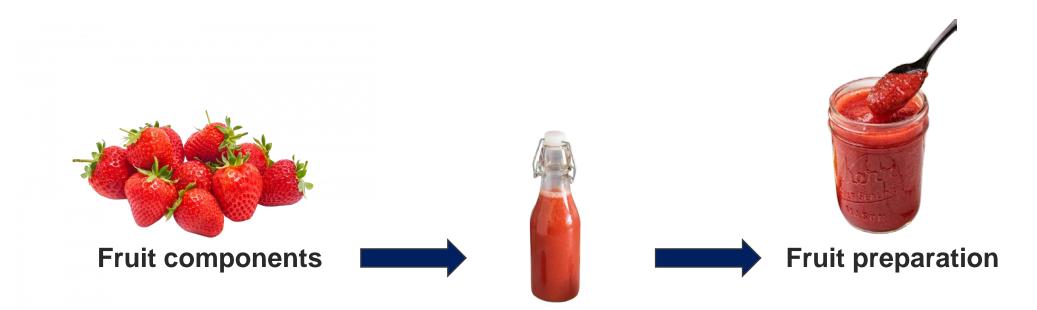


Fig. 1: Commercial strawberry fruit preparation [1]

Modified starches

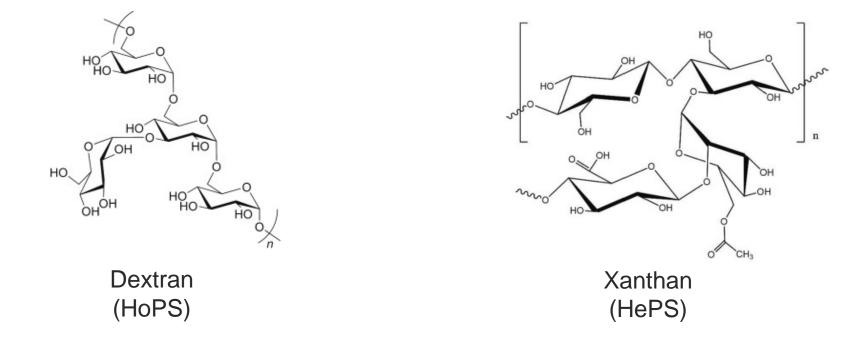
Amidated pectin (E440ii)

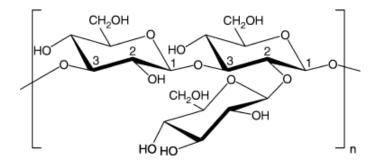

> Xanthan (E 415)

Hydroxypropyl Methyl Cellulose (E464)

Stabilization of Fruit Preparations – Microbes instead of Chemicals?

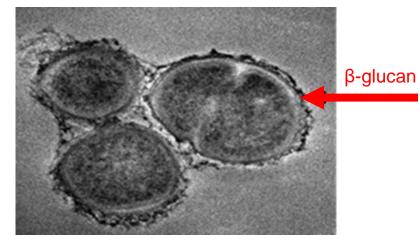
Intermediate products in the food industry


Uniform distribution of fruit pieces \rightarrow use of additives in form of **hydrocolloids**


Fermentation with exopolysaccharide - forming lactic acid bacteria (LAB)

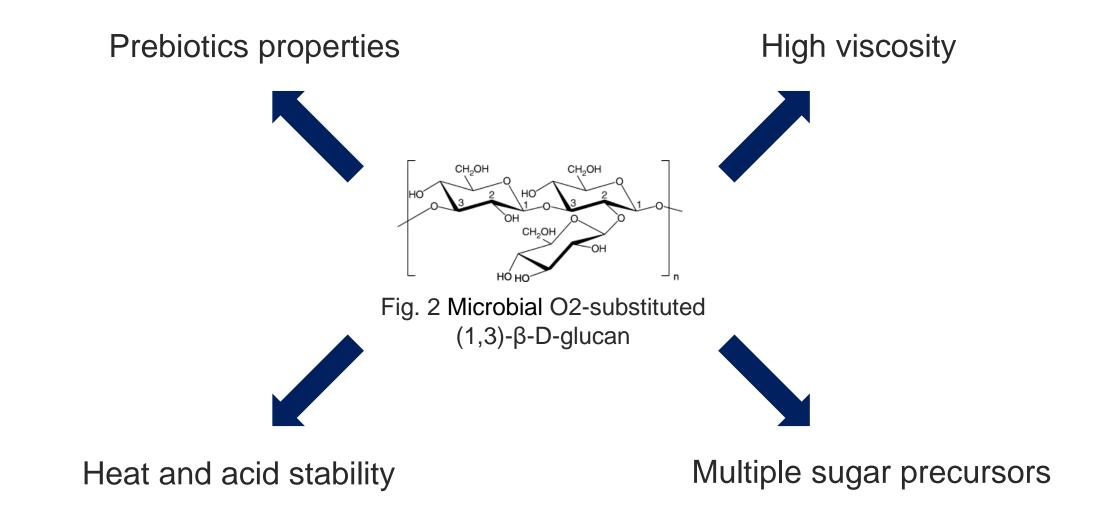
Exopolysaccharides (EPS): Texture Enhancer for Novel Foods

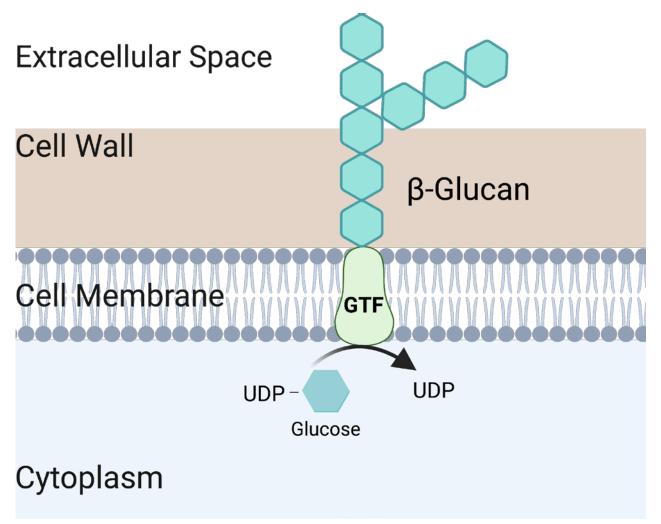
- Sugar polymers
- Release to the surrounding environment or bound onto the cell surface
- Biological function: survival in harsh environments
- In form of Homopolysaccharides (HoPS) or Heteropolysaccharides (HePS)



β-D-Glucan: Hidden Potential for Food Applications

Microbial O2-substituted (1,3)-β-Dglucan

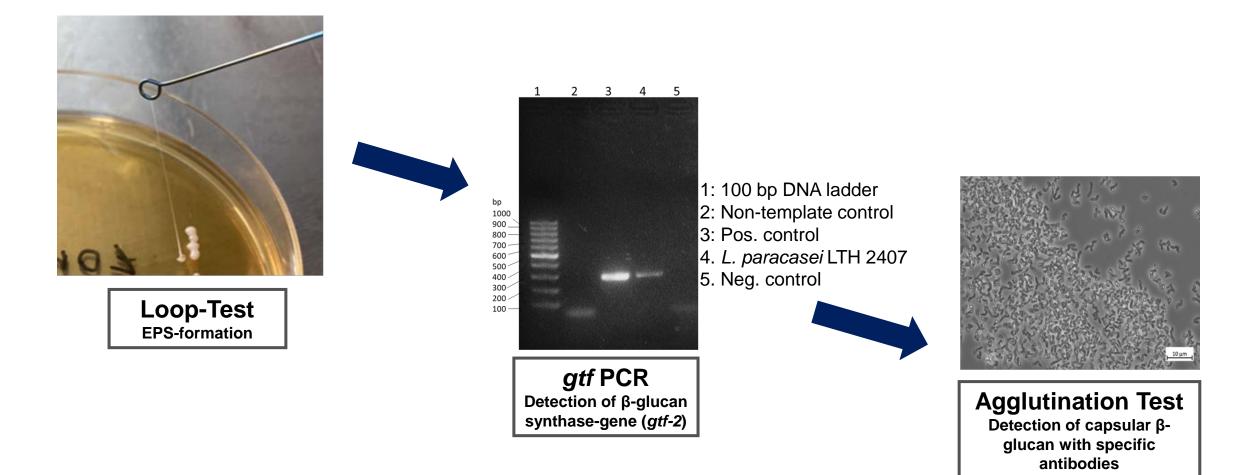



β-glucan network around *Pediococcus parvulus* [3]

"Ropiness" in beer [4]

β-D-Glucan: Hidden Potential for Food Applications

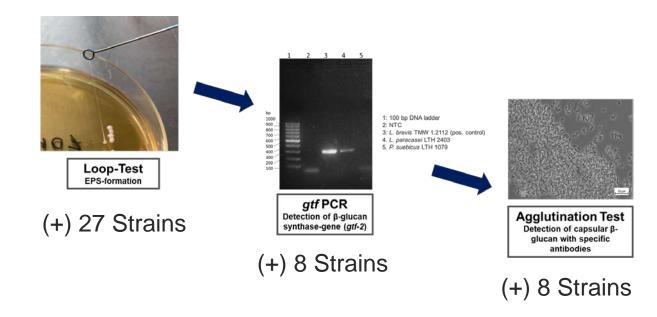
Mechanisms of β-glucan synthesis



Aim and Research Objectives

- Establishing a screening method for the selection of β-glucan LAB strains
- Characterization of the selected LAB strains
- Development of technological approach for stabilization of fruit preparations

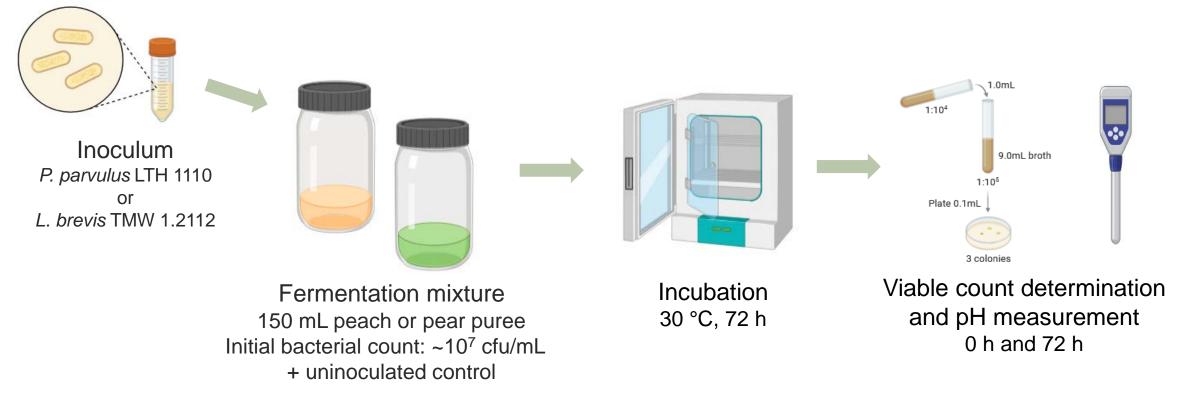
using selected LAB strains


Screening and Selection of β-Glucan Producing LAB strains

Selected LAB Strains for β-Glucan Production

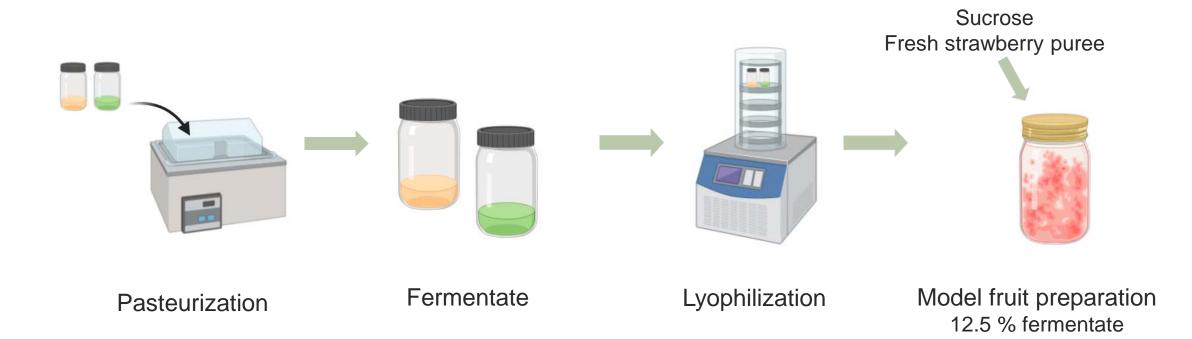
- 247 LAB strains screened
 - Pediococcus (22) Leuconostoc (17), Lactococcus (2),

Oenococcus (32), Weissella (4) and former Lactobacillus (170)

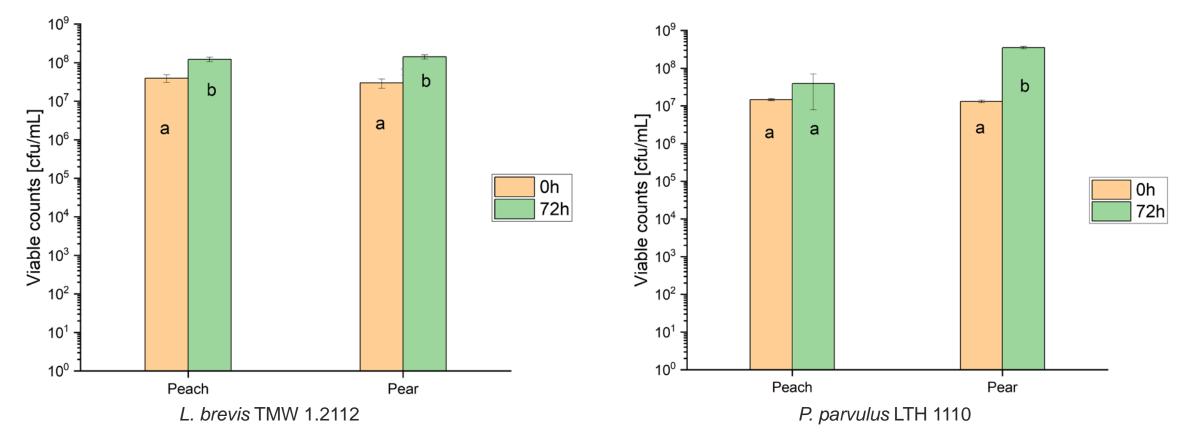

2 x Pediococcus parvulus

- 1 x Pediococcus damnosus
- 1 x Pediococcus claussenii
- 1 x Lacticaseibacillus paracasei
- 1 x Levilactobacillus brevis
- 2 x Furfurilactobacillus rossiae

P. parvulus LTH 1110 *L. brevis* TMW 1.2112


Stabilization of Fruit Preparations using β-Glucan-forming LAB

- Approach: production of fermentate \rightarrow replacement of hydrocolloid
- Fermentation of peach and pear purees (n=3)



Stabilization of Fruit Preparations using β-Glucan-forming LAB

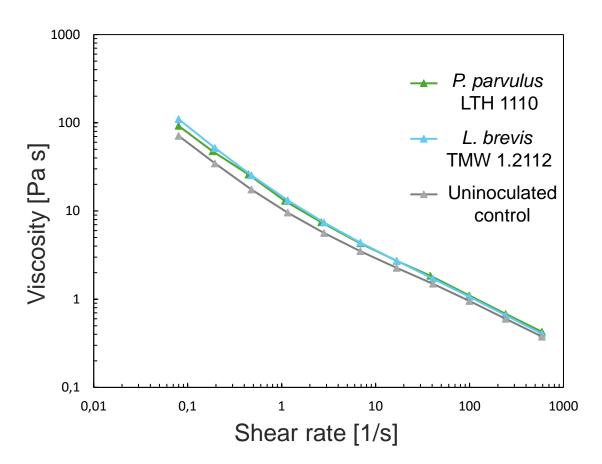
• Approach: production of fermentate \rightarrow replacement of hydrocolloid

LAB Strains Exhibit Growth during Fruit Fermentation

Bacterial count of LAB strains and the pH values of peach and pear purees at the beginning and at end of the 72 h fermentation.

Bacterial count values with the same letters are not significantly different ($p \ge 0.05$)

Chemical Composition of Fruit Fermentates


	Uninoculated control	L. brevis	P. parvulus
		TMW 1.2112	LTH 1110
Substance			
Sorbitol	$3.6\pm0.4^{\text{a}}$	$3.4\pm0.2^{\text{a}}$	3.2 ± 0.2^{a}
Mannitol	n.d. ^a	$3.1\pm0.3^{\text{b}}$	n.d. ^a
Glucose	$21.7\pm0.6^{\text{a}}$	$20.1 \pm 1.0^{\text{a}}$	20.4 ± 1.5^{a}
Sucrose	$26.3\pm2.4^{\text{a}}$	$25.7 \pm 1.3^{\text{a}}$	$25.7 \pm \mathbf{4.4^{a}}$
Fructose	$23.0 \pm 1.9^{\text{a}}$	$19.6 \pm 1.4^{\text{a}}$	21.9 ± 2.9^{a}
Total sugars	74.6 ± 3.6 ^a	72.0 ± 3.5 ^a	71.3 ± 9.0 ^a
Acetate	0.07 ± 0.05^{a}	0.84 ± 0.13^{b}	0.08 ± 0.01ª
Citrate	$0.13\pm0.03^{\rm a}$	$0.10\pm0.04^{\text{a}}$	n.d. ^a
Malate	3.10 ± 0.10^{a}	n.d. ^b	$1.13\pm0.60^{\circ}$
D-lactate	$0.70\pm0.24^{\text{a}}$	1.21 ± 0.28^{b}	$0.51\pm0.03^{\text{a}}$
L-lactate	$0.16\pm0.27^{\text{a}}$	2.93 ± 0.36^{b}	$1.80\pm0.39^{\circ}$
Ethanol	0.01 ± 0.01^{a}	0.04 ± 0.01^{a}	0.04 ± 0.01^{a}

Content of free sugars, organic acids and ethanol in fermented peach puree [g/kg]

n.d.: below detection limit

Values in one row with no common letter are significantly different ($p \le 0.05$)

Viscosity Increase of Fruit Preparation Through Fermentation

Flow curve of model fruit preparations containing lyophilized peach fermentates (n=9)

Viscosity of model fruit preparation with LAB - fermentates

Shear rate [1/s]	Viscosity [Pa s]			
	Uninoculated	L. brevis	P. parvulus	
	control	TMW1.2112	LTH 1110	
0.08	71.1 ± 15.0 ^a	110.00 ± 12.0 ^b	92.4 ± 28.0^{b}	
2.82	5.6 ± 0.7^{a}	7.4 ± 0.6^{b}	7.2 ± 1.9^{b}	
99.33	1.0 ± 0.1ª	1.1 ± 0.0 ^a	1.1 ± 0.2 ^a	

Values in one row with no common letter are significantly different ($p \le 0.05$)

Viscosity increase through fermentation

Shear rate [1/s]	Factor of viscosity change [-]		
	(η _{L. brevis} / η _{Control})	$(\eta_{p. parvulus}/\eta_{Control})$	
0.08	1.5	1.30	
2.82	1.3	1.3	
99.33	1.1	1.2	

Summary and Final Discussion

• Eight β-D-glucan- forming strains selected for fruit

fermentation

- Moderate growth of two LAB strains in the fruit matrix
- No significant change in sugar content through fermentation
- Significant involvement of malic acid metabolism
- Increase in viscosity through fermentation with selected LAB

strains only in the case of peach fermentate

Strawberry fruit preparation containing peach fermentate of *L. brevis* TMW 1.2112

Collaborators

University of Hamburg/Hamburg School of Food Science

/Food Microbiology

Prof. Dipl.-Ing. Dr. Agnes Weiß

University of Hohenheim /Institute of Food Science and Biotechnology

Dept. of Plant-Based Foods

Silvan Festini

Dr. Sybille Neidhart

Prof. Dr.-Ing. Mario Jekle

Dept. of Food Microbiology and Hygiene
<u>Supervisor</u>: Prof. Dr. Herbert Schmidt

Funding

FEI Project: 01IF22473N

... a project of the Industrial Collective Research (IGF)

Supported by:

on the basis of a decision by the German Bundestag RESEARCH ASSOCIATION OF THE GERMAN FOOD INDUSTRY

This IGF project of the FEI is/was supported within the programme for promoting the Industrial Collective Research (IGF) of the German Ministry of Economics and Climate Action (BMWK), based on a resolution of the German Parliament.

Thank you for your attention!